3D mapping for the identification of the fossa ovalis in left atrial ablation procedures: a pilot study of a first step towards an electroanatomic-guided transseptal puncture
Abstract Aims Transseptal puncture (TP) for left atrial (LA) catheter ablation procedures is routinely performed under fluoroscopic guidance. To decrease radiation exposure and increase safety alternative techniques are desirable. The aim of this study was to assess whether right atrial (RA) electro...
Gespeichert in:
Veröffentlicht in: | Europace (London, England) England), 2020-05, Vol.22 (5), p.732-738 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Aims
Transseptal puncture (TP) for left atrial (LA) catheter ablation procedures is routinely performed under fluoroscopic guidance. To decrease radiation exposure and increase safety alternative techniques are desirable. The aim of this study was to assess whether right atrial (RA) electroanatomic 3D mapping can reliably identify the fossa ovalis (FO) in preparation of TP.
Methods and results
Between May 2019 and August 2019, electroanatomic RA mapping was performed before TP in 61 patients with paroxysmal or persistent atrial fibrillation. Three electroanatomic methods for FO identification, mapping catheter-induced FO protrusion, electroanatomic-guided analysis, and voltage mapping, were evaluated and compared with transoesophageal echocardiography (TOE). Mapping catheter-induced FO protrusion was feasible in 60 patients (98%) with a mean displacement of 6.8 ± 2.5 mm, confirmed by TOE, and proofed to be the most valuable and easiest marker for FO identification. Electroanatomic-guided analysis localized the FO midpoint consistently in the lower half (43 ± 7%) and posterior (18.2 ± 4.4 mm) to a line between coronary sinus and vena cava superior. Analysis of RA voltage maps during sinus rhythm (n = 40, low-voltage cut-off value 1.0 and 1.5 mV) allowed secure FO recognition in 33% and 18%, only. A step-by-step approach, combining FO protrusion (first step) with anatomy criteria in case of protrusion failure (second step) would have allowed for the correct localization of a TP site within the FO in all patients.
Conclusion
Right atrial electroanatomic 3D mapping prior to TP proofed to be a simple tool for FO identification and may potentially be of use in the safe and radiation-free performance of TP prior to LA ablation procedures. |
---|---|
ISSN: | 1099-5129 1532-2092 |
DOI: | 10.1093/europace/euaa034 |