Premature Drug Release from Polyethylene Glycol (PEG)-Coated Liposomal Doxorubicin via Formation of the Membrane Attack Complex

Anti-polyethylene glycol (PEG) antibodies are present in many healthy individuals as well as in patients receiving polyethylene glycol-functionalized drugs. Antibodies against PEG-coated nanocarriers can accelerate their clearance, but their impact on nanodrug properties including nanocarrier integr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-07, Vol.14 (7), p.7808-7822
Hauptverfasser: Chen, Even, Chen, Bing-Mae, Su, Yu-Cheng, Chang, Yuan-Chih, Cheng, Tian-Lu, Barenholz, Yechezekel, Roffler, Steve R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anti-polyethylene glycol (PEG) antibodies are present in many healthy individuals as well as in patients receiving polyethylene glycol-functionalized drugs. Antibodies against PEG-coated nanocarriers can accelerate their clearance, but their impact on nanodrug properties including nanocarrier integrity is unclear. Here, we show that anti-PEG IgG and IgM antibodies bind to PEG molecules on the surface of PEG-coated liposomal doxorubicin (Doxil, Doxisome, LC-101, and Lipo-Dox), resulting in complement activation, formation of the membrane attack complex (C5b-9) in the liposomal membrane, and rapid release of encapsulated doxorubicin from the liposomes. Drug release depended on both classical and alternative pathways of complement activation. Doxorubicin release of up to 40% was also observed in rats treated with anti-PEG IgG and PEG-coated liposomal doxorubicin. Our results demonstrate that anti-PEG antibodies can disrupt the membrane integrity of PEG-coated liposomal doxorubicin through activation of complement, which may alter therapeutic efficacy and safety in patients with high levels of pre-existing antibodies against PEG.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.9b07218