A finite element first-order equation formulation for the small-disturbance transonic flow problem
The nonlinear, mixed elliptic hyperbolic equation describing a steady transonic flow is considered. The original equation is replaced by a system of first-order equations that are hyperbolic in time and defined in terms of velocity components. Parabolic regularization terms are added to capture shoc...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 1980-01, Vol.22 (2), p.161-186, Article 161 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The nonlinear, mixed elliptic hyperbolic equation describing a steady transonic flow is considered. The original equation is replaced by a system of first-order equations that are hyperbolic in time and defined in terms of velocity components. Parabolic regularization terms are added to capture shock wave solutions and to damp iterative solution algorithms. A finite element Galerkin method in space and a Crank-Nicolson finite difference method in iterative time are used to reduce the problem to the solution of a system of algebraic equations. Stability and convergence characteristics of the iterative method are discussed. The numerical implementation of the method is explained, and numerical results are presented. |
---|---|
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/0045-7825(80)90083-3 |