Hydrogen Impurities in ZnO: Shallow Donors in ZnO Semiconductors and Active Sites for Hydrogenation of Carbon Species

ZnO, as a low-cost yet significant semiconductor, has been widely used in solar energy conversion and optoelectronic devices. In addition, Cu/ZnO-based catalysts can convert syngas (H2, CO, and CO2) into methanol. However, the main concern about the intrinsic connection between the physical and chem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-04, Vol.11 (7), p.2402-2407
Hauptverfasser: Li, Titao, Wang, Mengye, Liu, Xiaolong, Jin, Mingge, Huang, Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ZnO, as a low-cost yet significant semiconductor, has been widely used in solar energy conversion and optoelectronic devices. In addition, Cu/ZnO-based catalysts can convert syngas (H2, CO, and CO2) into methanol. However, the main concern about the intrinsic connection between the physical and chemical properties and the structure of ZnO still remains. In this work, efforts are made to decipher the physical and chemical information encoded into the structure. Through using NMR–IR techniques, we, for the first time, report a new ZnO model with three H+ cations incorporated into one Zn vacancy. 1H magic-angle spinning NMR and IR spectra demonstrate that Ga3+ cations are introduced into the Zn vacancies of the ZnO lattice, which replace the H+ cation, and thus further confirm the feasibility of our proposed model. The exchange between the H+ cation in Zn vacancies and the D2 gas phase shows that ZnO can activate H2 because of the quantized three H+ cations in the defect site.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c00509