Technological mapping and trends in photobioreactors for the production of microalgae

Photobioreactors (PBRs) are equipment of central importance for the massive cultivation of microalgae, providing controlled conditions for high cell productivity. There are a few popular PBR designs, with contrasting advantages and limitations, such as poor light distribution, mass transfer, or hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2020-03, Vol.36 (3), p.42-42, Article 42
Hauptverfasser: Kirnev, P. C. S., Carvalho, J. C., Vandenberghe, L. P. S., Karp, S. G., Soccol, C. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photobioreactors (PBRs) are equipment of central importance for the massive cultivation of microalgae, providing controlled conditions for high cell productivity. There are a few popular PBR designs, with contrasting advantages and limitations, such as poor light distribution, mass transfer, or hydrodynamic behavior. Due to the environmental concerns in recent decades and the discovery of new, useful microalgal metabolites, the interest in finding alternatives to solve technological bottlenecks of PBRs has intensified. In this process, new geometries, materials, and modes of light supply were developed, generating a significant scientific and technological output, reported in papers and patents. We present a technological landscape analysis of photobioreactor design, focusing on improvements of the classical geometries and trends in industrial photobioreactors. The analysis of 412 patent documents showed a surge in innovation filing since 2005 and a reduction in the number of new documents along the last decade. The recent efforts in design improvement, the leading countries, institutes and companies that innovate, and the trends in PBR technology are presented and discussed.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-020-02819-0