HPLC reveals novel features of nucleoside and nucleobase homeostasis, nucleoside metabolism and nucleoside transport
Humans possess three members of the cation-coupled concentrative nucleoside transporter CNT (SLC 28) family, hCNT1-3: hCNT1 is selective for pyrimidine nucleosides but also transports adenosine, hCNT2 transports purine nucleosides and uridine, and hCNT3 transports both pyrimidine and purine nucleosi...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Biomembranes 2020-07, Vol.1862 (7), p.183247-183247, Article 183247 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Humans possess three members of the cation-coupled concentrative nucleoside transporter CNT (SLC 28) family, hCNT1-3: hCNT1 is selective for pyrimidine nucleosides but also transports adenosine, hCNT2 transports purine nucleosides and uridine, and hCNT3 transports both pyrimidine and purine nucleosides. hCNT1/2 transport nucleosides using the transmembrane Na+ electrochemical gradient, while hCNT3 is both Na+- and H+-coupled. By producing recombinant hCNT3 in Xenopus laevis oocytes, we have used radiochemical high performance liquid chromatography (HPLC) analysis to investigate the metabolic fate of transported [3H] or [14C] pyrimidine and purine nucleosides once inside cells. With the exception of adenosine, transported nucleosides were generally subject to minimal intracellular metabolism. We also used radiochemical HPLC analysis to study the mechanism by which adenosine functions as a low Km, low Vmax permeant of hCNT1. hCNT1-producing oocytes were pre-loaded with [3H] uridine, after which efflux of accumulated radioactivity was measured in transport medium alone, or in the presence of extracellular non-radiolabelled adenosine or uridine. hCNT1-mediated [3H]-efflux was stimulated by extracellular uridine, but inhibited by extracellular adenosine, with >95% of the radioactivity exiting cells being unmetabolized uridine, consistent with a low transmembrane mobility of the hCNT1/adenosine complex. Humans also possess four members of the equilibrative nucleoside transporter ENT (SLC 29) family, hENT1–4. Of these, hENT1 and hENT2 transport both nucleosides and nucleobases into and out of cells, but their relative contributions to nucleoside and nucleobase homeostasis and, in particular, to adenosine signaling via purinoreceptors, are not known. We therefore used HPLC to determine plasma nucleoside and nucleobase concentrations in wild-type, mENT1-, mENT2- and mENT1/mENT2-knockout (KO) mice, and to compare the findings with knockout of mCNT3. Results demonstrated that ENT1 was more important than ENT2 or CNT3 in determining plasma adenosine concentrations, indicated modest roles of ENT1 in the homeostasis of other nucleosides, and suggested that none of the transporters is a major participant in handling of nucleobases.
[Display omitted]
•HPLC was used to study nucleoside transport in Xenopus oocytes and knockout mice.•Oocytes subjected transported nucleosides to minimal intracellular metabolism.•Adenosine was an atypical permeant of concentrative nucleoside |
---|---|
ISSN: | 0005-2736 1879-2642 |
DOI: | 10.1016/j.bbamem.2020.183247 |