In-situ DNA hybridization detection based on a reflective microfiber probe

A label-free biosensor based on a reflective microfiber probe for in-situ real-time DNA hybridization detection is proposed and experimentally demonstrated. The microfiber probe is simply fabricated by snapping a non-adiabatic biconical microfiber through closing the oxyhydrogen flame during fiber s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-01, Vol.28 (2), p.970-979
Hauptverfasser: Li, Yanpeng, Fang, Fang, Yang, Liuyang, Tan, ShiJie, Yan, Zhijun, Sun, Qizhen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A label-free biosensor based on a reflective microfiber probe for in-situ real-time DNA hybridization detection is proposed and experimentally demonstrated. The microfiber probe is simply fabricated by snapping a non-adiabatic biconical microfiber through closing the oxyhydrogen flame during fiber stretching. Assisted with the Fresnel reflection at the end of microfiber, a reflective microfiber modal interferometer is realized. The in-situ DNA hybridization relies on the surface functionalization of a monolayer of Poly-L-lysine (PLL) and synthetic DNA sequences that bind to a given target with high specificity. The detection processes of DNA hybridization in various concentration of target DNA solutions are monitored in real-time and the experimental results present a minimum detectable concentration of 10pM with good repeatability. Additionally, the detection specificity is also investigated by immersing the microfiber probe into the non-complementary ssDNA solutions and observing the spectral variation. The proposed biosensor has advantages of high sensitivity, compact size, ease of use and simple fabrication, which makes it has great potential to be applied in a lot of fields such as disease diagnosis, medicine, and environmental science.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.380896