Single exposure lensless subpixel phase imaging: optical system design, modelling, and experimental study

Design and optimization of lensless phase-retrieval optical system with phase modulation of free-space propagation wavefront is proposed for subpixel imaging to achieve super-resolution reconstruction. Contrary to the traditional super-resolution phase-retrieval, the method in this paper requires a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-02, Vol.28 (4), p.4625-4637
Hauptverfasser: Kocsis, Péter, Shevkunov, Igor, Katkovnik, Vladimir, Egiazarian, Karen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Design and optimization of lensless phase-retrieval optical system with phase modulation of free-space propagation wavefront is proposed for subpixel imaging to achieve super-resolution reconstruction. Contrary to the traditional super-resolution phase-retrieval, the method in this paper requires a single observation only and uses the advanced Super-Resolution Sparse Phase Amplitude Retrieval (SR-SPAR) iterative technique which contains optimized sparsity based filters and multi-scale filters. The successful object imaging relies on modulation of the object wavefront with a random phase-mask, which generates coded diffracted intensity pattern, allowing us to extract subpixel information. The system's noise-robustness was investigated and verified. The super-resolution phase-imaging is demonstrated by simulations and physical experiments. The simulations included high quality reconstructions with super-resolution factor of 5, and acceptable at factor up to 9. By physical experiments 3 μm details were resolved, which are 2.3 times smaller than the resolution following from the Nyquist-Shannon sampling theorem.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.379785