Tailoring the magnetic field induced by the first higher order mode of an optical fiber

In this paper, according to the inverse Faraday effect (IFE), the amplitude, phase, polarization and field distribution of the first higher order mode of an optical fiber are tailored carefully, and a magnetic field with arbitrary orientation is generated in the focal region. Compared with tradition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-01, Vol.28 (2), p.2572-2582
Hauptverfasser: Zhang, Xiaoqiang, Rui, Guanghao, Xu, Yong, Zhang, Fan, Du, Yinchang, Lian, Mingtao, Wang, Anting, Ming, Hai, Zhao, Weishneg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, according to the inverse Faraday effect (IFE), the amplitude, phase, polarization and field distribution of the first higher order mode of an optical fiber are tailored carefully, and a magnetic field with arbitrary orientation is generated in the focal region. Compared with traditional strategies to generate a magnetic field with arbitrary orientation, where the configurations are complicated and the components employed for the system are costly, the first higher order mode of a fiber, which has two lobes with opposite instantaneous electric fields, draws more attention for generating a magnetic field with arbitrary orientation. We believe that such an arbitrary orientation state of magnetic field can be applied in the field of confocal and magnetic resonance microscopy and spin dynamics, especially for the use of optical magnetic recording, where laser pulses are used to trigger the magnetization switching.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.382293