Far-infrared photodetectors based on graphene/black-AsP heterostructures
We develop the device models for the far-infrared interband photodetectors (IPs) with the graphene-layer (GL) sensitive elements and the black Phosphorus (b-P) or black-Arsenic (b-As) barrier layers (BLs). These far-infrared GL/BL-based IPs (GBIPs) can operate at the photon energies smaller than the...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-01, Vol.28 (2), p.2480-2498 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop the device models for the far-infrared interband photodetectors (IPs) with the graphene-layer (GL) sensitive elements and the black Phosphorus (b-P) or black-Arsenic (b-As) barrier layers (BLs). These far-infrared GL/BL-based IPs (GBIPs) can operate at the photon energies
smaller than the energy gap, Δ
, of the b-P or b-As or their compounds, namely, at
≲2
/3 corresponding to the wavelength range
≳(6-12)
m. The GBIP operation spectrum can be shifted to the terahertz range by increasing the bias voltage. The BLs made of the compounds b-As
B
with different x, enable the GBIPs with desirable spectral characteristics. The GL doping level substantially affects the GBIP characteristics and is important for their optimization. A remarkable feature of the GBIPs under consideration is a substantial (over an order of magnitude) lowering of the dark current due to a partial suppression of the dark-current gain accompanied by a fairly high photoconductive gain. Due to a large absorption coefficient and photoconductive gain, the GBIPs can exhibit large values of the internal responsivity and dark-current-limited detectivity exceeding those of the quantum-well and quantum-dot IPs using the intersubband transitions. The GBIPs with the b-P and b-As BLs can operate at longer radiation wavelengths than the infrared GL-based IPs comprising the BLs made of other van der Waals materials and can also compete with all kinds of the far-infrared photodetectors. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.376299 |