Chip-based soliton microcomb module using a hybrid semiconductor laser
Photonic chip-based soliton microcombs have shown rapid progress and have already been used in many system-level applications. There has been substantial progress in realizing soliton microcombs that rely on compact laser sources, culminating in devices that only utilize a semiconductor gain chip or...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-02, Vol.28 (3), p.2714-2721 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photonic chip-based soliton microcombs have shown rapid progress and have already been used in many system-level applications. There has been substantial progress in realizing soliton microcombs that rely on compact laser sources, culminating in devices that only utilize a semiconductor gain chip or a self-injection-locked laser diode as the pump source. However, generating single solitons with electronically detectable repetition rates from a compact laser module has remained challenging. Here we demonstrate a current-initiated, Si
N
chip-based, 99-GHz soliton microcomb driven directly by a compact, semiconductor-based laser. This approach does not require any complex soliton tuning techniques, and single solitons can be accessed by tuning the laser current. Further, we demonstrate a generic, simple, yet reliable, packaging technique to facilitate the fiber-chip interface, which allows building a compact soliton microcomb package that can benefit from the fiber systems operating at high power (> 100 mW). Both techniques can exert immediate impact on chip-based nonlinear photonic applications that require high input power, high output power, and interfacing chip-based devices to mature fiber systems. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.28.002714 |