Predicting Core Level Photoelectron Spectra of Amino Acids Using Density Functional Theory

Core level photoelectron spectroscopy is a widely used technique to study amino acids. Interpretation of the individual contributions from functional groups and their local chemical environments to overall spectra requires both high-resolution reference spectra and theoretical insights, for example,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-03, Vol.11 (6), p.2256-2262
Hauptverfasser: Pi, Jo M, Stella, Martina, Fernando, Nathalie K, Lam, Aaron Y, Regoutz, Anna, Ratcliff, Laura E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Core level photoelectron spectroscopy is a widely used technique to study amino acids. Interpretation of the individual contributions from functional groups and their local chemical environments to overall spectra requires both high-resolution reference spectra and theoretical insights, for example, from density functional theory calculations. This is a particular challenge for crystalline amino acids due to the lack of experimental data and the limitation of previous calculations to gas phase molecules. Here, a state of the art multiresolution approach is used for high-precision gas phase calculations and to validate core hole pseudopotentials for plane-wave calculations. This powerful combination of complementary numerical techniques provides a framework for accurate ΔSCF calculations for molecules and solids in systematic basis sets. It is used to successfully predict C and O 1s core level spectra of glycine, alanine, and serine and identify chemical state contributions to experimental spectra of crystalline amino acids.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c00333