Flowfields produced by a robotic sea lion foreflipper starting from rest
Sea lions swim using primarily their foreflippers, which is uncommon among aquatic mammals. While a significant body of literature exists which investigates the hydrodynamics of body-caudal swimming, relatively little research has looked at sea lion propulsion. In this work, particle imaging velocim...
Gespeichert in:
Veröffentlicht in: | Bioinspiration & biomimetics 2020-03, Vol.15 (3), p.035002-035002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sea lions swim using primarily their foreflippers, which is uncommon among aquatic mammals. While a significant body of literature exists which investigates the hydrodynamics of body-caudal swimming, relatively little research has looked at sea lion propulsion. In this work, particle imaging velocimetry is used to observe the flow around a robotic model sea lion flipper. The model flipper was cast in silicone from a high-resolution scan of a sample sea lion foreflipper. The model flipper was actuated at the root, and its motion was controlled by a programmable servomotor. It was observed that the thrust-producing clapping motion of the flipper entrained significant fluid momentum on the suction side of the flipper, which developed into a shed vortex and contributed to downstream momentum (and therefore thrust). Rotating the robotic flipper more quickly produced greater downstream jet velocities, but at a lower conversion of rotational velocity, suggesting that this mechanism of propulsion can be optimized based on the system needs. |
---|---|
ISSN: | 1748-3190 1748-3190 |
DOI: | 10.1088/1748-3190/ab6a62 |