Nonisotropic chaotic vibrations of a 2D hyperbolic PDE
Little seems to be known about the chaos of the two-dimensional (2D) hyperbolic partial differential equations (PDEs). The objective of this paper is to study the nonisotropic chaotic vibrations of a system governed by a 2D linear hyperbolic PDE with mixed derivative terms (MDTs) and a nonlinear bou...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2020-02, Vol.30 (2), p.023127-023127 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Little seems to be known about the chaos of the two-dimensional (2D) hyperbolic partial differential equations (PDEs). The objective of this paper is to study the nonisotropic chaotic vibrations of a system governed by a 2D linear hyperbolic PDE with mixed derivative terms (MDTs) and a nonlinear boundary condition (NBC), where the interaction between MDTs and NBC causes the energy of such a system to rise and fall. The 2D hyperbolic system is proved to be topologically conjugate with the corresponding Riemann invariants, which are rigorously proved to be chaotic. Two numerical examples are carried out to demonstrate the theoretical results. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/1.5139910 |