Clinical Outcomes of Stereotactic MR-Guided Adaptive Radiation Therapy for High-Risk Lung Tumors

Magnetic resonance (MR)-guided SABR was performed for patients with lung tumors in whom treatment delivery was challenging owing to tumor location, motion, or pulmonary comorbidity. Because stereotactic MR-guided adaptive radiation therapy (SMART) is a novel approach, we studied clinical outcomes in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2020-06, Vol.107 (2), p.270-278
Hauptverfasser: Finazzi, Tobias, Haasbeek, Cornelis J.A., Spoelstra, Femke O.B., Palacios, Miguel A., Admiraal, Marjan A., Bruynzeel, Anna M.E., Slotman, Berend J., Lagerwaard, Frank J., Senan, Suresh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic resonance (MR)-guided SABR was performed for patients with lung tumors in whom treatment delivery was challenging owing to tumor location, motion, or pulmonary comorbidity. Because stereotactic MR-guided adaptive radiation therapy (SMART) is a novel approach, we studied clinical outcomes in these high-risk lung tumors. Fifty consecutive patients (54 lung tumors) underwent SMART between 2016 and 2018 for either a primary lung cancer (29 patients) or for lung metastases (21 patients). Eligible patients had risk factors that could predispose them to toxicity, including a central tumor location (n = 30), previous thoracic radiation therapy (n = 17), and interstitial lung disease (n = 7). A daily 17-second breath-hold MR scan was acquired in treatment position, and on-table plan adaptation was performed using the anatomy of the day. Gated SABR was delivered during repeated breath-holds under continuous MR guidance. All but 1 patient completed the planned SMART schedule. With daily plan adaptation, a biologically effective dose ≥100 Gy to 95% of the planning target volume was delivered in 50 tumors (93%). Median follow-up was 21.7 months (95% confidence interval, 19.9-28.1). Local control and overall and disease-free survival rates at 12 months were 95.6%, 88.0%, and 63.6%, respectively. Local failures developed in 4 patients: in 2 after reirradiation for a recurrent lung cancer and in 2 patients with a colorectal metastasis. Overall rates of any grade ≥2 and ≥3 toxicity were 30% and 8%, respectively. Commonest toxicities were grade ≥2 radiation pneumonitis (12%) and chest wall pain (8%). No grade 4 or 5 toxicities were observed. Use of MR-guided SABR resulted in low rates of high-grade toxicity and encouraging early local control in a cohort of high-risk lung tumors. Additional studies are needed to identify patients who are most likely to benefit from the SMART approach.
ISSN:0360-3016
1879-355X
DOI:10.1016/j.ijrobp.2020.02.025