Fiber diameter, porosity and functional group gradients in electrospun scaffolds

Developing, homeostatic, and regenerating tissues are full of various gradients, including mechanical, chemical, porosity and growth-factor gradients. However, it remains challenging to replicate these gradients using common tissue engineering approaches. Here, we use electrospinning to create scaff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical materials (Bristol) 2020-07, Vol.15 (4), p.45020-045020
Hauptverfasser: Zonderland, Jip, Rezzola, Silvia, Wieringa, Paul, Moroni, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing, homeostatic, and regenerating tissues are full of various gradients, including mechanical, chemical, porosity and growth-factor gradients. However, it remains challenging to replicate these gradients using common tissue engineering approaches. Here, we use electrospinning to create scaffolds with in-depth gradients. We created a fiber diameter gradient and pore size gradient throughout the depth of electrospun (ESP) scaffolds by a continuous gradient of polymer concentration. As an alternative to this established method, we developed a novel method to create fiber diameter gradients by changing the voltage on both needle and collector, keeping the total voltage constant. In this way, fiber diameter could be changed in a gradient matter by focusing the electrospinning spot. Using this method, we created a fiber diameter and pore size gradient, while keeping all other parameters constant. Lastly, we developed a novel method to create functional group gradients, which can potentially be used in a wide variety of polymer solutions to couple peptides and proteins to ESP scaffolds. A scaffold with an in-depth gradient of functional groups was created by adding functionalized poly(ethylene glycol) additives to the polymer solution, a novel method with potentially wide applications. The techniques demonstrated here could be applied to a wide variety of polymers and applications and can aid in developing physiologically relevant gradient scaffolds.
ISSN:1748-6041
1748-605X
1748-605X
DOI:10.1088/1748-605X/ab7b3c