A theoretical investigation of water adsorption on titanium dioxide surfaces
Water adsorption on various crystallographic faces of TiO 2 (anatase and rutile) are calculated using a periodic Hartree-Fock method. Titanium oxide is an amphoteric compound. Water adsorbs on the acidic site, the titanium atom, and then dissociates to give hydroxyl groups. The adsorption energy is...
Gespeichert in:
Veröffentlicht in: | Surface science 1994-03, Vol.304 (3), p.343-359 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water adsorption on various crystallographic faces of TiO
2 (anatase and rutile) are calculated using a periodic Hartree-Fock method. Titanium oxide is an amphoteric compound. Water adsorbs on the acidic site, the titanium atom, and then dissociates to give hydroxyl groups. The adsorption energy is larger on the (110) face of the rutile structure than on other faces and is correlated with its very acidic sites. The OH groups are oriented to maximize hydrogen bonding. Hydrogen bonding is particularly important for molecular adsorption on the (100) face of the rutile structure; in this case, the molecular adsorption becomes competitive with the dissociative one. The thermodynamics of water adsorption strongly favor dissociation when singly-coordinated oxygen atoms are present on the surface as it is in a perfectly truncated anatase surface. |
---|---|
ISSN: | 0039-6028 1879-2758 |
DOI: | 10.1016/0039-6028(94)91345-5 |