Ventricular scar channel entrances identified by new wideband cardiac magnetic resonance sequence to guide ventricular tachycardia ablation in patients with cardiac defibrillators
Abstract Aims Ventricular tachycardia (VT) substrate-based ablation has become a standard procedure. Electroanatomical mapping (EAM) detects scar tissue heterogeneity and define conduction channels (CCs) that are the ablation target. Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) i...
Gespeichert in:
Veröffentlicht in: | Europace (London, England) England), 2020-04, Vol.22 (4), p.598-606 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Aims
Ventricular tachycardia (VT) substrate-based ablation has become a standard procedure. Electroanatomical mapping (EAM) detects scar tissue heterogeneity and define conduction channels (CCs) that are the ablation target. Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) is able to depict CCs and increase ablation success. Most patients undergoing VT ablation have an implantable cardioverter-defibrillator (ICD) that can cause image artefacts in LGE-CMR. Recently wideband (WB) LGE-CMR sequence has demonstrated to decrease these artefacts. The aim of this study is to analyse accuracy of WB-LGE-CMR in identifying the CC entrances.
Methods and results
Thirteen consecutive ICD-patients who underwent VT ablation after WB-LGE-CMR were included. Number and location of CC entrances in three-dimensional EAM and in WB-LGE-CMR reconstruction were compared. Concordance was compared with a historical cohort matched by cardiomyopathy, scar location, and age (26 patients) with LGE-CMR prior to ICD and VT ablation. In WB-CMR group, 101 and 93 CC entrances were identified in EAM and WB-LGE-CMR, respectively. In historical cohort, 179 CC entrances were identified in both EAM and LGE-CMR. The EAM/CMR concordance was 85.1% and 92.2% in the WB and historical group, respectively (P = 0.66). There were no differences in false-positive rate (CC entrances detected in CMR and absent in EAM: 7.5% vs 7.8% in WB vs. conventional CMR, P = 0.92) nor in false-negative rate (CC entrances present in EAM not detected in CMR: 14.9% vs.7.8% in WB vs. conventional CMR, P = 0.23). Epicardial CCs was predictor of poor CMR/EAM concordance (OR 2.15, P = 0.031).
Conclusion
Use of WB-LGE-CMR sequence in ICD-patients allows adequate VT substrate characterization to guide VT ablation with similar accuracy than conventional LGE-CMR in patients without an ICD. |
---|---|
ISSN: | 1099-5129 1532-2092 |
DOI: | 10.1093/europace/euaa021 |