Effect of Fixed-Density Thresholding on Structural Brain Networks: A Demonstration in Cerebral Small Vessel Disease

A popular solution to control for edge density variability in structural brain network analysis is to threshold the networks to a fixed density across all subjects. However, it remains unclear how this type of thresholding affects the basic network architecture in terms of edge weights, hub location...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain connectivity 2020-04, Vol.10 (3), p.121-133
Hauptverfasser: de Brito Robalo, Bruno M, Vlegels, Naomi, Meier, Jil, Leemans, Alexander, Biessels, Geert Jan, Reijmer, Yael D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A popular solution to control for edge density variability in structural brain network analysis is to threshold the networks to a fixed density across all subjects. However, it remains unclear how this type of thresholding affects the basic network architecture in terms of edge weights, hub location, and hub connectivity and, especially, how it affects the sensitivity to detect disease-related abnormalities. We investigated these two questions in a cohort of patients with cerebral small vessel disease and age-matched controls. Brain networks were reconstructed from diffusion magnetic resonance imaging data using deterministic fiber tractography. Networks were thresholded to a fixed density by removing edges with the lowest number of streamlines. We compared edge length (mm), fractional anisotropy (FA), proportion of hub connections, and hub location between the unthresholded and the thresholded networks of each subject. Moreover, we compared weighted graph measures of global and local connectivity obtained from the (un)thresholded networks between patients and controls. We performed these analyses over a range of densities (2-20%). Results indicate that fixed-density thresholding disproportionally removes edges composed of long streamlines, but is independent of FA. The edges removed were not preferentially connected to hub or nonhub nodes. Over half of the original hubs were reproducible when networks were thresholded to a density ≥10%. Furthermore, the between-group differences in graph measures observed in the unthresholded network remained present after thresholding, irrespective of the chosen density. We therefore conclude that moderate fixed-density thresholds can successfully be applied to control for the effects of density in structural brain network analysis.
ISSN:2158-0014
2158-0022
DOI:10.1089/brain.2019.0686