Probing the Magnetism of Topological End States in 5‑Armchair Graphene Nanoribbons

We extensively characterize the electronic structure of ultranarrow graphene nanoribbons (GNRs) with armchair edges and zigzag termini that have five carbon atoms across their width (5-AGNRs), as synthesized on Au(111). Scanning tunneling spectroscopy measurements on the ribbons, recorded on both th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-04, Vol.14 (4), p.4499-4508
Hauptverfasser: Lawrence, James, Brandimarte, Pedro, Berdonces-Layunta, Alejandro, Mohammed, Mohammed S. G, Grewal, Abhishek, Leon, Christopher C, Sánchez-Portal, Daniel, de Oteyza, Dimas G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extensively characterize the electronic structure of ultranarrow graphene nanoribbons (GNRs) with armchair edges and zigzag termini that have five carbon atoms across their width (5-AGNRs), as synthesized on Au(111). Scanning tunneling spectroscopy measurements on the ribbons, recorded on both the metallic substrate and a decoupling NaCl layer, show well-defined dispersive bands and in-gap states. In combination with theoretical calculations, we show how these in-gap states are topological in nature and localized at the zigzag termini of the nanoribbons. In addition to rationalizing the driving force behind the topological class selection of 5-AGNRs, we also uncover the length-dependent behavior of these end states which transition from singly occupied spin-split states to a closed-shell form as the ribbons become shorter. Finally, we demonstrate the magnetic character of the end states via transport experiments in a model two-terminal device structure in which the ribbons are suspended between the scanning probe and the substrate that both act as leads.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.9b10191