Photonic access concentrator for ATM gigabit switching fabrics
In future broadband communication networks the interest for purely photonic switches is due to the bandwidth mismatch between optical transmission networks and electronic switching nodes. Photonic ATM switching fabrics mainly based on wavelength-switching stages are therefore being studied, to imple...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 1995-11, Vol.13 (11), p.2142-2151 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In future broadband communication networks the interest for purely photonic switches is due to the bandwidth mismatch between optical transmission networks and electronic switching nodes. Photonic ATM switching fabrics mainly based on wavelength-switching stages are therefore being studied, to implement high capacity switches with also concentration, multiplexing and demultiplexing functions, using state-of-the-art photonic technology. The architecture of an ATM photonic access concentrator is described in this paper, illustrating the design and implementation of its basic subsystems, the traffic concentrator and the cell multiplexer. The design guidelines are outlined in detail referring to an example, where 128 user lines at 622 Mb/s are given access to 4 outlets at 2.488 Gb/s. The corresponding implementation, based on the systematic use of cell wavelength encoding, makes use either of well-known photonic components, such as Fabry-Perot filters, fiber delay lines, splitters and combiners, either of recently developed devices, like high-speed optical gates and tunable filters and lasers. Finally, the system feasibility is demonstrated presenting the results obtained on a reduced size and speed experimental setup of the cell multiplexer. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/50.482034 |