Using a mouse model to gain insights into developmental coordination disorder
Motor impairments are a common feature of many neurodevelopmental disorders; in fact, over 50% of children with Attentional Deficit Hyperactivity Disorder or Autism Spectrum Disorder may have a co‐occurring diagnosis of developmental coordination disorder (DCD). DCD is a neurodevelopmental disorder...
Gespeichert in:
Veröffentlicht in: | Genes, brain and behavior brain and behavior, 2020-04, Vol.19 (4), p.e12647-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motor impairments are a common feature of many neurodevelopmental disorders; in fact, over 50% of children with Attentional Deficit Hyperactivity Disorder or Autism Spectrum Disorder may have a co‐occurring diagnosis of developmental coordination disorder (DCD). DCD is a neurodevelopmental disorder of unknown etiology that affects motor coordination and learning, significantly impacting a child's ability to carry out everyday activities. Animal models play an important role in scientific investigation of behaviour and the mechanisms and processes that are involved in control of motor actions. The purpose of this paper is to present an approach in the mouse directed to gain behavioral and genetic insights into DCD that is designed with high face validity, construct validity and predictive validity. Pre‐clinical and clinical expertise is used to establish a set of scientific criteria that the model will meet in order to investigate the potential underlying causes of DCD.
The purpose of this paper is to present an approach in the mouse directed to gain behavioural and genetic insights into developmental coordination disorder that is designed with high face validity, construct validity, and predictive validity. |
---|---|
ISSN: | 1601-1848 1601-183X |
DOI: | 10.1111/gbb.12647 |