Mu-net: Multi-scale U-net for two-photon microscopy image denoising and restoration

Advances in two two-photon microscopy (2PM) have made three-dimensional (3D) neural imaging of deep cortical regions possible. However, 2PM often suffers from poor image quality because of various noise factors, including blur, white noise, and photo bleaching. In addition, the effectiveness of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2020-05, Vol.125, p.92-103
Hauptverfasser: Lee, Sehyung, Negishi, Makiko, Urakubo, Hidetoshi, Kasai, Haruo, Ishii, Shin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue
container_start_page 92
container_title Neural networks
container_volume 125
creator Lee, Sehyung
Negishi, Makiko
Urakubo, Hidetoshi
Kasai, Haruo
Ishii, Shin
description Advances in two two-photon microscopy (2PM) have made three-dimensional (3D) neural imaging of deep cortical regions possible. However, 2PM often suffers from poor image quality because of various noise factors, including blur, white noise, and photo bleaching. In addition, the effectiveness of the existing image processing methods is limited because of the special features of 2PM images such as deeper tissue penetration but higher image noises owing to rapid laser scanning. To address the denoising problems in 2PM 3D images, we present a new algorithm based on deep convolutional neural networks (CNNs). The proposed model consists of multiple U-nets in which an individual U-net removes noises at different scales and then yields a performance improvement based on a coarse-to-fine strategy. Moreover, the constituent CNNs employ fully 3D convolution operations. Such an architecture enables the proposed model to facilitate end-to-end learning without any pre/post processing. Based on the experiments on 2PM image denoising, we observed that our new algorithm demonstrates substantial performance improvements over other baseline methods.
doi_str_mv 10.1016/j.neunet.2020.01.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2363071399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608020300368</els_id><sourcerecordid>2363071399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-337684f8b3e1de36cff771ae0adb43b0a6ece6e6358f7948a1c08d2b97238ce23</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVoyG7SfINSdOzFzkhyJbmHQlmaP7AhhzRnIcvjVItX2kp2Sr59tOy2x5wGhvfmzfsR8olBzYDJq00dcA441Rw41MBq4PKELJlWbcWV5h_IEnQrKgkaFuQ85w0ASN2IM7IQHJRuZbMkj_dzVY58o_fzOPkqOzsifdqv6BATnf7Gavc7TjHQrXcpZhd3r9Rv7TPSHkP02YdnakNPE-YpJjv5GD6S08GOGS-P84I8Xf_8tbqt1g83d6sf68o1qpkqIVR5Z9CdQNajkG4YlGIWwfZdIzqwEh1KlOKrHlTbaMsc6J53reJCO-Tignw53N2l-Gcu-Wbrs8NxtAHjnA0XUoBiom2LtDlI9x1ywsHsUmmRXg0Ds8dpNuaA0-xxGmCm4Cy2z8eEudti_9_0j18RfD8IsPR88ZhMdh6Dw94ndJPpo38_4Q1p-oja</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363071399</pqid></control><display><type>article</type><title>Mu-net: Multi-scale U-net for two-photon microscopy image denoising and restoration</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Sehyung ; Negishi, Makiko ; Urakubo, Hidetoshi ; Kasai, Haruo ; Ishii, Shin</creator><creatorcontrib>Lee, Sehyung ; Negishi, Makiko ; Urakubo, Hidetoshi ; Kasai, Haruo ; Ishii, Shin</creatorcontrib><description>Advances in two two-photon microscopy (2PM) have made three-dimensional (3D) neural imaging of deep cortical regions possible. However, 2PM often suffers from poor image quality because of various noise factors, including blur, white noise, and photo bleaching. In addition, the effectiveness of the existing image processing methods is limited because of the special features of 2PM images such as deeper tissue penetration but higher image noises owing to rapid laser scanning. To address the denoising problems in 2PM 3D images, we present a new algorithm based on deep convolutional neural networks (CNNs). The proposed model consists of multiple U-nets in which an individual U-net removes noises at different scales and then yields a performance improvement based on a coarse-to-fine strategy. Moreover, the constituent CNNs employ fully 3D convolution operations. Such an architecture enables the proposed model to facilitate end-to-end learning without any pre/post processing. Based on the experiments on 2PM image denoising, we observed that our new algorithm demonstrates substantial performance improvements over other baseline methods.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2020.01.026</identifier><identifier>PMID: 32078964</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Deep learning ; GAN ; Image denoising ; Two-photon microscopy image ; U-net</subject><ispartof>Neural networks, 2020-05, Vol.125, p.92-103</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-337684f8b3e1de36cff771ae0adb43b0a6ece6e6358f7948a1c08d2b97238ce23</citedby><cites>FETCH-LOGICAL-c474t-337684f8b3e1de36cff771ae0adb43b0a6ece6e6358f7948a1c08d2b97238ce23</cites><orcidid>0000-0003-2327-9027 ; 0000-0001-7137-4622 ; 0000-0002-1816-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2020.01.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32078964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sehyung</creatorcontrib><creatorcontrib>Negishi, Makiko</creatorcontrib><creatorcontrib>Urakubo, Hidetoshi</creatorcontrib><creatorcontrib>Kasai, Haruo</creatorcontrib><creatorcontrib>Ishii, Shin</creatorcontrib><title>Mu-net: Multi-scale U-net for two-photon microscopy image denoising and restoration</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Advances in two two-photon microscopy (2PM) have made three-dimensional (3D) neural imaging of deep cortical regions possible. However, 2PM often suffers from poor image quality because of various noise factors, including blur, white noise, and photo bleaching. In addition, the effectiveness of the existing image processing methods is limited because of the special features of 2PM images such as deeper tissue penetration but higher image noises owing to rapid laser scanning. To address the denoising problems in 2PM 3D images, we present a new algorithm based on deep convolutional neural networks (CNNs). The proposed model consists of multiple U-nets in which an individual U-net removes noises at different scales and then yields a performance improvement based on a coarse-to-fine strategy. Moreover, the constituent CNNs employ fully 3D convolution operations. Such an architecture enables the proposed model to facilitate end-to-end learning without any pre/post processing. Based on the experiments on 2PM image denoising, we observed that our new algorithm demonstrates substantial performance improvements over other baseline methods.</description><subject>Deep learning</subject><subject>GAN</subject><subject>Image denoising</subject><subject>Two-photon microscopy image</subject><subject>U-net</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVoyG7SfINSdOzFzkhyJbmHQlmaP7AhhzRnIcvjVItX2kp2Sr59tOy2x5wGhvfmzfsR8olBzYDJq00dcA441Rw41MBq4PKELJlWbcWV5h_IEnQrKgkaFuQ85w0ASN2IM7IQHJRuZbMkj_dzVY58o_fzOPkqOzsifdqv6BATnf7Gavc7TjHQrXcpZhd3r9Rv7TPSHkP02YdnakNPE-YpJjv5GD6S08GOGS-P84I8Xf_8tbqt1g83d6sf68o1qpkqIVR5Z9CdQNajkG4YlGIWwfZdIzqwEh1KlOKrHlTbaMsc6J53reJCO-Tignw53N2l-Gcu-Wbrs8NxtAHjnA0XUoBiom2LtDlI9x1ywsHsUmmRXg0Ds8dpNuaA0-xxGmCm4Cy2z8eEudti_9_0j18RfD8IsPR88ZhMdh6Dw94ndJPpo38_4Q1p-oja</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Lee, Sehyung</creator><creator>Negishi, Makiko</creator><creator>Urakubo, Hidetoshi</creator><creator>Kasai, Haruo</creator><creator>Ishii, Shin</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2327-9027</orcidid><orcidid>https://orcid.org/0000-0001-7137-4622</orcidid><orcidid>https://orcid.org/0000-0002-1816-0040</orcidid></search><sort><creationdate>202005</creationdate><title>Mu-net: Multi-scale U-net for two-photon microscopy image denoising and restoration</title><author>Lee, Sehyung ; Negishi, Makiko ; Urakubo, Hidetoshi ; Kasai, Haruo ; Ishii, Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-337684f8b3e1de36cff771ae0adb43b0a6ece6e6358f7948a1c08d2b97238ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deep learning</topic><topic>GAN</topic><topic>Image denoising</topic><topic>Two-photon microscopy image</topic><topic>U-net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sehyung</creatorcontrib><creatorcontrib>Negishi, Makiko</creatorcontrib><creatorcontrib>Urakubo, Hidetoshi</creatorcontrib><creatorcontrib>Kasai, Haruo</creatorcontrib><creatorcontrib>Ishii, Shin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sehyung</au><au>Negishi, Makiko</au><au>Urakubo, Hidetoshi</au><au>Kasai, Haruo</au><au>Ishii, Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mu-net: Multi-scale U-net for two-photon microscopy image denoising and restoration</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2020-05</date><risdate>2020</risdate><volume>125</volume><spage>92</spage><epage>103</epage><pages>92-103</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Advances in two two-photon microscopy (2PM) have made three-dimensional (3D) neural imaging of deep cortical regions possible. However, 2PM often suffers from poor image quality because of various noise factors, including blur, white noise, and photo bleaching. In addition, the effectiveness of the existing image processing methods is limited because of the special features of 2PM images such as deeper tissue penetration but higher image noises owing to rapid laser scanning. To address the denoising problems in 2PM 3D images, we present a new algorithm based on deep convolutional neural networks (CNNs). The proposed model consists of multiple U-nets in which an individual U-net removes noises at different scales and then yields a performance improvement based on a coarse-to-fine strategy. Moreover, the constituent CNNs employ fully 3D convolution operations. Such an architecture enables the proposed model to facilitate end-to-end learning without any pre/post processing. Based on the experiments on 2PM image denoising, we observed that our new algorithm demonstrates substantial performance improvements over other baseline methods.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>32078964</pmid><doi>10.1016/j.neunet.2020.01.026</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2327-9027</orcidid><orcidid>https://orcid.org/0000-0001-7137-4622</orcidid><orcidid>https://orcid.org/0000-0002-1816-0040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2020-05, Vol.125, p.92-103
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2363071399
source Access via ScienceDirect (Elsevier)
subjects Deep learning
GAN
Image denoising
Two-photon microscopy image
U-net
title Mu-net: Multi-scale U-net for two-photon microscopy image denoising and restoration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mu-net:%20Multi-scale%20U-net%20for%20two-photon%20microscopy%20image%20denoising%20and%20restoration&rft.jtitle=Neural%20networks&rft.au=Lee,%20Sehyung&rft.date=2020-05&rft.volume=125&rft.spage=92&rft.epage=103&rft.pages=92-103&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2020.01.026&rft_dat=%3Cproquest_cross%3E2363071399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363071399&rft_id=info:pmid/32078964&rft_els_id=S0893608020300368&rfr_iscdi=true