Mu-net: Multi-scale U-net for two-photon microscopy image denoising and restoration

Advances in two two-photon microscopy (2PM) have made three-dimensional (3D) neural imaging of deep cortical regions possible. However, 2PM often suffers from poor image quality because of various noise factors, including blur, white noise, and photo bleaching. In addition, the effectiveness of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2020-05, Vol.125, p.92-103
Hauptverfasser: Lee, Sehyung, Negishi, Makiko, Urakubo, Hidetoshi, Kasai, Haruo, Ishii, Shin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in two two-photon microscopy (2PM) have made three-dimensional (3D) neural imaging of deep cortical regions possible. However, 2PM often suffers from poor image quality because of various noise factors, including blur, white noise, and photo bleaching. In addition, the effectiveness of the existing image processing methods is limited because of the special features of 2PM images such as deeper tissue penetration but higher image noises owing to rapid laser scanning. To address the denoising problems in 2PM 3D images, we present a new algorithm based on deep convolutional neural networks (CNNs). The proposed model consists of multiple U-nets in which an individual U-net removes noises at different scales and then yields a performance improvement based on a coarse-to-fine strategy. Moreover, the constituent CNNs employ fully 3D convolution operations. Such an architecture enables the proposed model to facilitate end-to-end learning without any pre/post processing. Based on the experiments on 2PM image denoising, we observed that our new algorithm demonstrates substantial performance improvements over other baseline methods.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2020.01.026