The contribution of sGAGs to stress-controlled tensile response of posterior porcine sclera
Despite the significant progress in characterizing mechanical functions of individual scleral extracellular matrix (ECM) components, the biomechanical contribution of sulfated glycosaminoglycans (sGAGs) is still poorly understood. The primary purpose of this study was to determine the possible funct...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-02, Vol.15 (2), p.e0227856-e0227856 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0227856 |
---|---|
container_issue | 2 |
container_start_page | e0227856 |
container_title | PloS one |
container_volume | 15 |
creator | Hatami-Marbini, Hamed Pachenari, Mohammad |
description | Despite the significant progress in characterizing mechanical functions of individual scleral extracellular matrix (ECM) components, the biomechanical contribution of sulfated glycosaminoglycans (sGAGs) is still poorly understood. The primary purpose of this study was to determine the possible function of sGAGs in scleral mechanical response by characterizing the tensile behavior of normal and sGAG-depleted samples. We used chondroitinase ABC solution to remove sGAGs from scleral samples that were dissected from posterior porcine eyes. We performed biochemical analyses for assessing the efficacy of sGAG removal protocol. Furthermore, we conducted stress-controlled uniaxial tensile tests to characterize the influence of sGAG removal on mechanical properties of sclera. The tensile behavior of scleral strips right after dissection and after being soaked in buffer was also determined. Biochemical analyses confirmed that 18 hour incubation in 0.125 U/ml Chondroitinase ABC solution removed over 90% of chondroitin and dermatan sGAGs. No significant difference was observed in the thickness/hydration of samples because of enzyme- and buffer-treated samples. Furthermore, it was found that sGAG depletion did not significantly alter the tangent modulus, energy dissipation, and peak strain of posterior scleral strips. It was concluded that sGAGs did not influence the stress-controlled viscoelastic tensile response of sclera. |
doi_str_mv | 10.1371/journal.pone.0227856 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2362115949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A614629575</galeid><doaj_id>oai_doaj_org_article_1e1e484737ed4cefbd8807321802a380</doaj_id><sourcerecordid>A614629575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bfa11dc1587b7f56866288e7fed7b5864246f641463723d6c0d72572513d9b723</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3nn6H4gWBNGHXfOjTdIXYTl0XTg40NMXH0KaTnezZJu9JBX97013e8dW7kEaaJh85juTmUyWvcRojinHH7au952y873rYI4I4aJkj7JzXFEyYwTRxyf7s-xZCFuESioYe5qdUYJEgQt8nv282UCuXRe9qftoXJe7Ng_LxTLk0eUheghhdjh31kKTR-iCsZAnewocYMD3LkTwxvm089p0kAdtwavn2ZNW2QAvxv9F9v3zp5vLL7Or6-XqcnE106wicVa3CuNG41LwmrclSykSIYC30PC6FKwgBWtZSpdRTmjDNGo4KdPCtKnqZLrIXh9199YFOdYlSEIZQpwyzhKxOhKNU1u592an_B_plJEHg_NrqXw0KWuJAUMhCk45NIWGtm6ESCoEC0QUFShpfRyj9fUOGg2pNspORKcnndnItfslOaKFOKT7bhTw7raHEOXOBA3Wqg5cf8ibYFxWRZXQN_-gD99upNYqXcB0rUtx9SAqFyyVjVQlLxM1f4BKXwM7kzoMberr1OH9xGF4BfA7rlUfglx9-_r_7PWPKfv2hN2AsnETnD28vjAFiyOovQvBQ3tfZIzkMAN31ZDDDMhxBpLbq9MG3TvdPXr6F7JWAFI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360073676</pqid></control><display><type>article</type><title>The contribution of sGAGs to stress-controlled tensile response of posterior porcine sclera</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hatami-Marbini, Hamed ; Pachenari, Mohammad</creator><contributor>Pavao, Mauro Sergio Goncalves</contributor><creatorcontrib>Hatami-Marbini, Hamed ; Pachenari, Mohammad ; Pavao, Mauro Sergio Goncalves</creatorcontrib><description>Despite the significant progress in characterizing mechanical functions of individual scleral extracellular matrix (ECM) components, the biomechanical contribution of sulfated glycosaminoglycans (sGAGs) is still poorly understood. The primary purpose of this study was to determine the possible function of sGAGs in scleral mechanical response by characterizing the tensile behavior of normal and sGAG-depleted samples. We used chondroitinase ABC solution to remove sGAGs from scleral samples that were dissected from posterior porcine eyes. We performed biochemical analyses for assessing the efficacy of sGAG removal protocol. Furthermore, we conducted stress-controlled uniaxial tensile tests to characterize the influence of sGAG removal on mechanical properties of sclera. The tensile behavior of scleral strips right after dissection and after being soaked in buffer was also determined. Biochemical analyses confirmed that 18 hour incubation in 0.125 U/ml Chondroitinase ABC solution removed over 90% of chondroitin and dermatan sGAGs. No significant difference was observed in the thickness/hydration of samples because of enzyme- and buffer-treated samples. Furthermore, it was found that sGAG depletion did not significantly alter the tangent modulus, energy dissipation, and peak strain of posterior scleral strips. It was concluded that sGAGs did not influence the stress-controlled viscoelastic tensile response of sclera.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0227856</identifier><identifier>PMID: 32084141</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Biochemistry ; Biology and Life Sciences ; Biomechanics ; Buffers ; Chondroitin ; Chondroitin ABC lyase ; Chondroitin sulfate ; Depletion ; Dissection ; Elasticity ; Energy dissipation ; Enzymes ; Extracellular matrix ; Fibrillar Collagens - metabolism ; Glycosaminoglycans ; Glycosaminoglycans - metabolism ; Hydration ; Industrial engineering ; Mechanical analysis ; Mechanical properties ; Medicine and Health Sciences ; Mucopolysaccharides ; Organ Size ; Physical Sciences ; Sclera - physiopathology ; Social Sciences ; Stress, Mechanical ; Sulfates ; Sulfates - metabolism ; Surgery ; Swine ; Tangent modulus ; Tensile Strength ; Tensile tests ; Viscoelasticity ; Viscosity</subject><ispartof>PloS one, 2020-02, Vol.15 (2), p.e0227856-e0227856</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Hatami-Marbini, Pachenari. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Hatami-Marbini, Pachenari 2020 Hatami-Marbini, Pachenari</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bfa11dc1587b7f56866288e7fed7b5864246f641463723d6c0d72572513d9b723</citedby><cites>FETCH-LOGICAL-c692t-bfa11dc1587b7f56866288e7fed7b5864246f641463723d6c0d72572513d9b723</cites><orcidid>0000-0002-6693-2121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034872/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034872/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32084141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pavao, Mauro Sergio Goncalves</contributor><creatorcontrib>Hatami-Marbini, Hamed</creatorcontrib><creatorcontrib>Pachenari, Mohammad</creatorcontrib><title>The contribution of sGAGs to stress-controlled tensile response of posterior porcine sclera</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Despite the significant progress in characterizing mechanical functions of individual scleral extracellular matrix (ECM) components, the biomechanical contribution of sulfated glycosaminoglycans (sGAGs) is still poorly understood. The primary purpose of this study was to determine the possible function of sGAGs in scleral mechanical response by characterizing the tensile behavior of normal and sGAG-depleted samples. We used chondroitinase ABC solution to remove sGAGs from scleral samples that were dissected from posterior porcine eyes. We performed biochemical analyses for assessing the efficacy of sGAG removal protocol. Furthermore, we conducted stress-controlled uniaxial tensile tests to characterize the influence of sGAG removal on mechanical properties of sclera. The tensile behavior of scleral strips right after dissection and after being soaked in buffer was also determined. Biochemical analyses confirmed that 18 hour incubation in 0.125 U/ml Chondroitinase ABC solution removed over 90% of chondroitin and dermatan sGAGs. No significant difference was observed in the thickness/hydration of samples because of enzyme- and buffer-treated samples. Furthermore, it was found that sGAG depletion did not significantly alter the tangent modulus, energy dissipation, and peak strain of posterior scleral strips. It was concluded that sGAGs did not influence the stress-controlled viscoelastic tensile response of sclera.</description><subject>Analysis</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Biomechanics</subject><subject>Buffers</subject><subject>Chondroitin</subject><subject>Chondroitin ABC lyase</subject><subject>Chondroitin sulfate</subject><subject>Depletion</subject><subject>Dissection</subject><subject>Elasticity</subject><subject>Energy dissipation</subject><subject>Enzymes</subject><subject>Extracellular matrix</subject><subject>Fibrillar Collagens - metabolism</subject><subject>Glycosaminoglycans</subject><subject>Glycosaminoglycans - metabolism</subject><subject>Hydration</subject><subject>Industrial engineering</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Medicine and Health Sciences</subject><subject>Mucopolysaccharides</subject><subject>Organ Size</subject><subject>Physical Sciences</subject><subject>Sclera - physiopathology</subject><subject>Social Sciences</subject><subject>Stress, Mechanical</subject><subject>Sulfates</subject><subject>Sulfates - metabolism</subject><subject>Surgery</subject><subject>Swine</subject><subject>Tangent modulus</subject><subject>Tensile Strength</subject><subject>Tensile tests</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3nn6H4gWBNGHXfOjTdIXYTl0XTg40NMXH0KaTnezZJu9JBX97013e8dW7kEaaJh85juTmUyWvcRojinHH7au952y873rYI4I4aJkj7JzXFEyYwTRxyf7s-xZCFuESioYe5qdUYJEgQt8nv282UCuXRe9qftoXJe7Ng_LxTLk0eUheghhdjh31kKTR-iCsZAnewocYMD3LkTwxvm089p0kAdtwavn2ZNW2QAvxv9F9v3zp5vLL7Or6-XqcnE106wicVa3CuNG41LwmrclSykSIYC30PC6FKwgBWtZSpdRTmjDNGo4KdPCtKnqZLrIXh9199YFOdYlSEIZQpwyzhKxOhKNU1u592an_B_plJEHg_NrqXw0KWuJAUMhCk45NIWGtm6ESCoEC0QUFShpfRyj9fUOGg2pNspORKcnndnItfslOaKFOKT7bhTw7raHEOXOBA3Wqg5cf8ibYFxWRZXQN_-gD99upNYqXcB0rUtx9SAqFyyVjVQlLxM1f4BKXwM7kzoMberr1OH9xGF4BfA7rlUfglx9-_r_7PWPKfv2hN2AsnETnD28vjAFiyOovQvBQ3tfZIzkMAN31ZDDDMhxBpLbq9MG3TvdPXr6F7JWAFI</recordid><startdate>20200221</startdate><enddate>20200221</enddate><creator>Hatami-Marbini, Hamed</creator><creator>Pachenari, Mohammad</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6693-2121</orcidid></search><sort><creationdate>20200221</creationdate><title>The contribution of sGAGs to stress-controlled tensile response of posterior porcine sclera</title><author>Hatami-Marbini, Hamed ; Pachenari, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bfa11dc1587b7f56866288e7fed7b5864246f641463723d6c0d72572513d9b723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Biomechanics</topic><topic>Buffers</topic><topic>Chondroitin</topic><topic>Chondroitin ABC lyase</topic><topic>Chondroitin sulfate</topic><topic>Depletion</topic><topic>Dissection</topic><topic>Elasticity</topic><topic>Energy dissipation</topic><topic>Enzymes</topic><topic>Extracellular matrix</topic><topic>Fibrillar Collagens - metabolism</topic><topic>Glycosaminoglycans</topic><topic>Glycosaminoglycans - metabolism</topic><topic>Hydration</topic><topic>Industrial engineering</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Medicine and Health Sciences</topic><topic>Mucopolysaccharides</topic><topic>Organ Size</topic><topic>Physical Sciences</topic><topic>Sclera - physiopathology</topic><topic>Social Sciences</topic><topic>Stress, Mechanical</topic><topic>Sulfates</topic><topic>Sulfates - metabolism</topic><topic>Surgery</topic><topic>Swine</topic><topic>Tangent modulus</topic><topic>Tensile Strength</topic><topic>Tensile tests</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatami-Marbini, Hamed</creatorcontrib><creatorcontrib>Pachenari, Mohammad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatami-Marbini, Hamed</au><au>Pachenari, Mohammad</au><au>Pavao, Mauro Sergio Goncalves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The contribution of sGAGs to stress-controlled tensile response of posterior porcine sclera</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-02-21</date><risdate>2020</risdate><volume>15</volume><issue>2</issue><spage>e0227856</spage><epage>e0227856</epage><pages>e0227856-e0227856</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Despite the significant progress in characterizing mechanical functions of individual scleral extracellular matrix (ECM) components, the biomechanical contribution of sulfated glycosaminoglycans (sGAGs) is still poorly understood. The primary purpose of this study was to determine the possible function of sGAGs in scleral mechanical response by characterizing the tensile behavior of normal and sGAG-depleted samples. We used chondroitinase ABC solution to remove sGAGs from scleral samples that were dissected from posterior porcine eyes. We performed biochemical analyses for assessing the efficacy of sGAG removal protocol. Furthermore, we conducted stress-controlled uniaxial tensile tests to characterize the influence of sGAG removal on mechanical properties of sclera. The tensile behavior of scleral strips right after dissection and after being soaked in buffer was also determined. Biochemical analyses confirmed that 18 hour incubation in 0.125 U/ml Chondroitinase ABC solution removed over 90% of chondroitin and dermatan sGAGs. No significant difference was observed in the thickness/hydration of samples because of enzyme- and buffer-treated samples. Furthermore, it was found that sGAG depletion did not significantly alter the tangent modulus, energy dissipation, and peak strain of posterior scleral strips. It was concluded that sGAGs did not influence the stress-controlled viscoelastic tensile response of sclera.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32084141</pmid><doi>10.1371/journal.pone.0227856</doi><tpages>e0227856</tpages><orcidid>https://orcid.org/0000-0002-6693-2121</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-02, Vol.15 (2), p.e0227856-e0227856 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2362115949 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Animals Biochemistry Biology and Life Sciences Biomechanics Buffers Chondroitin Chondroitin ABC lyase Chondroitin sulfate Depletion Dissection Elasticity Energy dissipation Enzymes Extracellular matrix Fibrillar Collagens - metabolism Glycosaminoglycans Glycosaminoglycans - metabolism Hydration Industrial engineering Mechanical analysis Mechanical properties Medicine and Health Sciences Mucopolysaccharides Organ Size Physical Sciences Sclera - physiopathology Social Sciences Stress, Mechanical Sulfates Sulfates - metabolism Surgery Swine Tangent modulus Tensile Strength Tensile tests Viscoelasticity Viscosity |
title | The contribution of sGAGs to stress-controlled tensile response of posterior porcine sclera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20contribution%20of%20sGAGs%20to%20stress-controlled%20tensile%20response%20of%20posterior%20porcine%20sclera&rft.jtitle=PloS%20one&rft.au=Hatami-Marbini,%20Hamed&rft.date=2020-02-21&rft.volume=15&rft.issue=2&rft.spage=e0227856&rft.epage=e0227856&rft.pages=e0227856-e0227856&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0227856&rft_dat=%3Cgale_plos_%3EA614629575%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2360073676&rft_id=info:pmid/32084141&rft_galeid=A614629575&rft_doaj_id=oai_doaj_org_article_1e1e484737ed4cefbd8807321802a380&rfr_iscdi=true |