The contribution of sGAGs to stress-controlled tensile response of posterior porcine sclera

Despite the significant progress in characterizing mechanical functions of individual scleral extracellular matrix (ECM) components, the biomechanical contribution of sulfated glycosaminoglycans (sGAGs) is still poorly understood. The primary purpose of this study was to determine the possible funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-02, Vol.15 (2), p.e0227856-e0227856
Hauptverfasser: Hatami-Marbini, Hamed, Pachenari, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the significant progress in characterizing mechanical functions of individual scleral extracellular matrix (ECM) components, the biomechanical contribution of sulfated glycosaminoglycans (sGAGs) is still poorly understood. The primary purpose of this study was to determine the possible function of sGAGs in scleral mechanical response by characterizing the tensile behavior of normal and sGAG-depleted samples. We used chondroitinase ABC solution to remove sGAGs from scleral samples that were dissected from posterior porcine eyes. We performed biochemical analyses for assessing the efficacy of sGAG removal protocol. Furthermore, we conducted stress-controlled uniaxial tensile tests to characterize the influence of sGAG removal on mechanical properties of sclera. The tensile behavior of scleral strips right after dissection and after being soaked in buffer was also determined. Biochemical analyses confirmed that 18 hour incubation in 0.125 U/ml Chondroitinase ABC solution removed over 90% of chondroitin and dermatan sGAGs. No significant difference was observed in the thickness/hydration of samples because of enzyme- and buffer-treated samples. Furthermore, it was found that sGAG depletion did not significantly alter the tangent modulus, energy dissipation, and peak strain of posterior scleral strips. It was concluded that sGAGs did not influence the stress-controlled viscoelastic tensile response of sclera.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0227856