Advancement on modification of chitosan biopolymer and its potential applications

Chitosan is the second abundant biopolymer present on earth after cellulose. Chitosan is extracted from the shells of shrimp and other crustaceans. Several methods were reported for its extraction, but the most commercial is the deacetylation of chitin. Chitosan as a biopolymer has numerous applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2020-06, Vol.152, p.681-702
Hauptverfasser: Negm, Nabel A., Hefni, Hassan H.H., Abd-Elaal, Ali A.A., Badr, Emad A., Abou Kana, Maram T.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chitosan is the second abundant biopolymer present on earth after cellulose. Chitosan is extracted from the shells of shrimp and other crustaceans. Several methods were reported for its extraction, but the most commercial is the deacetylation of chitin. Chitosan as a biopolymer has numerous applications and uses. But, its mechanical, chemical and biological characteristics can be enhanced by modification of its chemical structures. Several modification methods and derivatives were reviewed in the literatures, and several were collected in this review. The reviewed modified chitosan derivatives herein were five types of derivatives. The first is substituted chitosan derivatives including thiolated, phosphorylated, and N-phthaloylated derivatives. The second is crosslinked chitosan derivatives including chitosan-glutaraldehyde, chitosan-ethylene diamine tetraacetic acid, and chitosan-epichlorohydrin derivatives. The third is carboxylic acid derivatives of chitosan obtained from carboxyalkylation, acrylation, methacrylation, and benzoylation of chitosan. The fourth is ionic chitosan derivatives including highly cationic and sulfated derivatives. The last is bounded chitosan to specific molecules including cyclodextrin, thiosemicarbazone, dioxime, and crown ether precursors. The review also highlights the reported advantages and applications of the modified chitosan and the synthetic routes of the biopolymer modification. •Chitosan biopolymer can be functionalized by numerous function groups.•Functionalization can be addition, coupling, and crosslinking.•Modification of chitosan upgrades its potential applications.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2020.02.196