Ruthenium Bipyridyl Dithiocyanate Complex Exerted Adjuvant Activity on the Activated Mammalian Macrophages in vitro
A cell’s function can be regulated through its mechanism, and there has been a growing body of literature on how immune cells’ metabolism shapes its overall immune response. Manipulation of the cells metabolic activity through a biocompatible material would present new venues to the field of medicin...
Gespeichert in:
Veröffentlicht in: | Inflammation 2020-06, Vol.43 (3), p.1120-1126 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A cell’s function can be regulated through its mechanism, and there has been a growing body of literature on how immune cells’ metabolism shapes its overall immune response. Manipulation of the cells metabolic activity through a biocompatible material would present new venues to the field of medicine. These agents are known as immunomodulatory and immunostimulatory reagents. They can either stimulate the immune response in a disease case where the immune response is lacking the strength or they can determine the nature and strength of the immune response as an immunomodulator according to our needs to cope with certain disorders. In our recent studies, we have been examining different kinds of materials on the macrophages in order to delineate their immunostimulatory or immunomodulatory potentials. Ruthenium-based materials have gathered our attention due to their ability to get involved into the electron mobility processes in the solar cells. In line with our expectations, probably by interfering the electron transport processes of the macrophages, ruthenium bipyridyl dithiocyanate complex had a stark immunomodulatory function on the LPS-activated mammalian macrophages
in vitro
. Our results support that it can be utilized as an adjuvant in the new generation vaccines. |
---|---|
ISSN: | 0360-3997 1573-2576 |
DOI: | 10.1007/s10753-020-01199-9 |