High-current stream of energetic α particles from laser-driven proton-boron fusion
The nuclear reaction known as proton-boron fusion has been triggered by a subnanosecond laser system focused onto a thick boron nitride target at modest laser intensity (∼10^{16}W/cm^{2}), resulting in a record yield of generated α particles. The estimated value of α particles emitted per laser puls...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2020-01, Vol.101 (1-1), p.013204-013204, Article 013204 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The nuclear reaction known as proton-boron fusion has been triggered by a subnanosecond laser system focused onto a thick boron nitride target at modest laser intensity (∼10^{16}W/cm^{2}), resulting in a record yield of generated α particles. The estimated value of α particles emitted per laser pulse is around 10^{11}, thus orders of magnitude higher than any other experimental result previously reported. The accelerated α-particle stream shows unique features in terms of kinetic energy (up to 10 MeV), pulse duration (∼10 ns), and peak current (∼2 A) at 1 m from the source, promising potential applications of such neutronless nuclear fusion reactions. We have used a beam-driven fusion scheme to explain the total number of α particles generated in the nuclear reaction. In this model, protons accelerated inside the plasma, moving forward into the bulk of the target, can interact with ^{11}B atoms, thus efficiently triggering fusion reactions. An overview of literature results obtained with different laser parameters, experimental setups, and target compositions is reported and discussed. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.101.013204 |