Host affinity of endophytic fungi and the potential for reciprocal interactions involving host secondary chemistry
Premise Interactions between fungal endophytes and their host plants present useful systems for identifying important factors affecting assembly of host‐associated microbiomes. Here we investigated the role of secondary chemistry in mediating host affinity of asymptomatic foliar endophytic fungi usi...
Gespeichert in:
Veröffentlicht in: | American journal of botany 2020-02, Vol.107 (2), p.219-228 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Premise
Interactions between fungal endophytes and their host plants present useful systems for identifying important factors affecting assembly of host‐associated microbiomes. Here we investigated the role of secondary chemistry in mediating host affinity of asymptomatic foliar endophytic fungi using Psychotria spp. and Theobroma cacao (cacao) as hosts.
Methods
First, we surveyed endophytic communities in Psychotria species in a natural common garden using culture‐based methods. Then we compared differences in endophytic community composition with differences in foliar secondary chemistry in the same host species, determined by liquid chromatography–tandem mass spectrometry. Finally, we tested how inoculation with live and heat‐killed endophytes affected the cacao chemical profile.
Results
Despite sharing a common environment and source pool for endophyte spores, different Psychotria host species harbored strikingly different endophytic communities that reflected intrinsic differences in their leaf chemical profiles. In T. cacao, inoculation with live and heat‐killed endophytes produced distinct cacao chemical profiles not found in uninoculated plants or pure fungal cultures, suggesting that endophytes, like pathogens, induce changes in secondary chemical profiles of their host plant.
Conclusions
Collectively our results suggest at least two potential processes: (1) Plant secondary chemistry influences assembly and composition of fungal endophytic communities, and (2) host colonization by endophytes subsequently induces changes in the host chemical landscape. We propose a series of testable predictions based on the possibility that reciprocal chemical interactions are a general property of plant–endophyte interactions. |
---|---|
ISSN: | 0002-9122 1537-2197 |
DOI: | 10.1002/ajb2.1436 |