A simple 3-point flexural method for measuring fracture toughness of the dental porcelain to zirconia bond and other brittle bimaterial interfaces

Porcelain fused to zirconia prostheses are widely used, but porcelain chipping, fracture, spalling and delamination are common clinical problems. Conventional bond strength testing is inherently unsuited for studying interfacial failure by cracking in brittle materials. Instead, fracture toughness i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of prosthodontic research 2020-10, Vol.64 (4), p.391-396
Hauptverfasser: White, Shane N., Green, Chad C., McMeeking, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Porcelain fused to zirconia prostheses are widely used, but porcelain chipping, fracture, spalling and delamination are common clinical problems. Conventional bond strength testing is inherently unsuited for studying interfacial failure by cracking in brittle materials. Instead, fracture toughness is a more meaningful parameter because it can assess the robustness of the interface when subjected to loading, but fracture mechanics approaches have only rarely been used. Our purpose was to develop a novel, simple, 3-point flexural methodology and mathematical analysis to measure the fracture toughness of the porcelain to zirconia interface. Equations were derived to estimate the fracture toughness of the bond by computing the interfacial energy release rate for a novel simple 3-point flexural test model. The test was validated using two different configurations of layered zirconia/porcelain beams (n = 10), approximating the dimensions of a fixed dental prosthesis, fabricated from a tetragonal polycrystalline zirconium dioxide partially stabilized with yttria and a feldspathic dental porcelain. Cracking along the bimaterial interface was produced and measured as a discrete event. Fracture toughness means (standard deviations) computed from the measured energy release rate, for the porcelain to zirconia interface in two different specimen configurations were 7.9 (1.3) and 5.3 (1.6) J/m2. Equations were derived to measure interfacial fracture toughness of brittle materials using a novel simple 3-point flexural test method. The test was then validated; estimates for the fracture toughness for the porcelain to zirconia bond, overlapped with previously published data derived from more complex 4-point notched tests.
ISSN:1883-1958
2212-4632
DOI:10.1016/j.jpor.2019.11.002