Fixation Stability of Uncemented Acetabular Cups With Respect to Different Bone Defect Sizes
In total hip arthroplasty, acetabular press-fit cups require a proper bone stock for sufficient primary implant fixation. The presence of acetabular bone defects compromises the primary fixation stability of acetabular press-fit cups. The aim of the present study is to determine the fixation stabili...
Gespeichert in:
Veröffentlicht in: | The Journal of arthroplasty 2020-06, Vol.35 (6), p.1720-1728 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In total hip arthroplasty, acetabular press-fit cups require a proper bone stock for sufficient primary implant fixation. The presence of acetabular bone defects compromises the primary fixation stability of acetabular press-fit cups. The aim of the present study is to determine the fixation stability of a cementless acetabular cup regarding standardized bone defects in an experimental setup.
An acetabular defect model was developed and transferred to a biomechanical cup-block model. The lack of superior cup coverage was divided into 4 stages of superior rim loss (33%, 50%, 67%, and 83%) in the anterior-posterior direction and into 4 stages of mediolateral wall absence (11%, 22%, 33%, and 50%). This resulted in 11 different defect cavities, which were compared to the intact cavity in push-in and lever-out tests of one press-fit cup design (56 mm outer diameter). Thereby, push-in force, lever-out moment, lever-out angle, and interface stiffness were determined.
The determined lever-out moments range from 15.53 ± 1.38 Nm (intact cavity) to 1.37 ± 0.54 Nm (83%/50% defect). Smaller defects (33%/11%, 33%/22%, and 50%/11%) reduce the lever-out moments by an average of 33.9% ± 2.8%.
The lack of mediolateral acetabular coverage of 50% was assessed as critical for cementless cup fixation, whereby the contact zone between implant and bone in the defect is lost. A lack of 20% to 30% mediolateral coverage appears to be acceptable for press-fit cup fixation in the presence of primary stability. A defect of 50%/50% was identified as the threshold for using additional fixation methods. |
---|---|
ISSN: | 0883-5403 1532-8406 |
DOI: | 10.1016/j.arth.2020.01.019 |