Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference
We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise datase...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-01, Vol.124 (4), p.041102-041102, Article 041102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 041102 |
---|---|
container_issue | 4 |
container_start_page | 041102 |
container_title | Physical review letters |
container_volume | 124 |
creator | Chua, Alvin J K Vallisneri, Michele |
description | We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.211101]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments. |
doi_str_mv | 10.1103/PhysRevLett.124.041102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2355973432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350935839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-69eb4977dccf0e985d48066424084267a4717b98920b3b58188b79c86b1bfc433</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOj_-ghS88abz5KNNcqmiUxg6huJlSbNTrXaNJunG_r3VTRGvXjg878vhIeSYwpBS4GeTl1WY4mKMMQ4pE0MQ_ZltkQEFqVNJqdgmAwBOUw0g98h-CK8AQFmudskeZ5ApydWATMdofFu3z8mFWWGoTZtMXIjoa-dDsqzjS3KHnTdNH3Hp_FtIKueTkTeLOppYu9Y06ZNZYHLbVuixtXhIdirTBDza5AF5vL56uLxJx_ej28vzcWq5ZjHNNZZCSzmztgLUKpsJBXkumAAlWC6NkFSWWmkGJS8zRZUqpbYqL2lZWcH5ATld775799FhiMW8DhabxrToulAwnmVacsFZj578Q19d5_vXvynQPFNc91S-pqx3IXisindfz41fFRSKL-vFH-tFb71YW--Lx5v5rpzj7Lf2o5l_AuLxf54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350935839</pqid></control><display><type>article</type><title>Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chua, Alvin J K ; Vallisneri, Michele</creator><creatorcontrib>Chua, Alvin J K ; Vallisneri, Michele</creatorcontrib><description>We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.211101]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.041102</identifier><identifier>PMID: 32058738</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Artificial neural networks ; Astronomy ; Bayesian analysis ; Gravitation ; Gravitational waves ; Machine learning ; Neural networks ; Parameter estimation ; Reduced order models ; Statistical inference ; Waveforms</subject><ispartof>Physical review letters, 2020-01, Vol.124 (4), p.041102-041102, Article 041102</ispartof><rights>Copyright American Physical Society Jan 31, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-69eb4977dccf0e985d48066424084267a4717b98920b3b58188b79c86b1bfc433</citedby><cites>FETCH-LOGICAL-c392t-69eb4977dccf0e985d48066424084267a4717b98920b3b58188b79c86b1bfc433</cites><orcidid>0000-0002-4162-0033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32058738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chua, Alvin J K</creatorcontrib><creatorcontrib>Vallisneri, Michele</creatorcontrib><title>Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.211101]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments.</description><subject>Artificial neural networks</subject><subject>Astronomy</subject><subject>Bayesian analysis</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Reduced order models</subject><subject>Statistical inference</subject><subject>Waveforms</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMoOj_-ghS88abz5KNNcqmiUxg6huJlSbNTrXaNJunG_r3VTRGvXjg878vhIeSYwpBS4GeTl1WY4mKMMQ4pE0MQ_ZltkQEFqVNJqdgmAwBOUw0g98h-CK8AQFmudskeZ5ApydWATMdofFu3z8mFWWGoTZtMXIjoa-dDsqzjS3KHnTdNH3Hp_FtIKueTkTeLOppYu9Y06ZNZYHLbVuixtXhIdirTBDza5AF5vL56uLxJx_ej28vzcWq5ZjHNNZZCSzmztgLUKpsJBXkumAAlWC6NkFSWWmkGJS8zRZUqpbYqL2lZWcH5ATld775799FhiMW8DhabxrToulAwnmVacsFZj578Q19d5_vXvynQPFNc91S-pqx3IXisindfz41fFRSKL-vFH-tFb71YW--Lx5v5rpzj7Lf2o5l_AuLxf54</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Chua, Alvin J K</creator><creator>Vallisneri, Michele</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4162-0033</orcidid></search><sort><creationdate>20200131</creationdate><title>Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference</title><author>Chua, Alvin J K ; Vallisneri, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-69eb4977dccf0e985d48066424084267a4717b98920b3b58188b79c86b1bfc433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Astronomy</topic><topic>Bayesian analysis</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Reduced order models</topic><topic>Statistical inference</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chua, Alvin J K</creatorcontrib><creatorcontrib>Vallisneri, Michele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chua, Alvin J K</au><au>Vallisneri, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-01-31</date><risdate>2020</risdate><volume>124</volume><issue>4</issue><spage>041102</spage><epage>041102</epage><pages>041102-041102</pages><artnum>041102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.211101]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32058738</pmid><doi>10.1103/PhysRevLett.124.041102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4162-0033</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-01, Vol.124 (4), p.041102-041102, Article 041102 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2355973432 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Astronomy Bayesian analysis Gravitation Gravitational waves Machine learning Neural networks Parameter estimation Reduced order models Statistical inference Waveforms |
title | Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Bayesian%20Posteriors%20with%20Neural%20Networks%20for%20Gravitational-Wave%20Inference&rft.jtitle=Physical%20review%20letters&rft.au=Chua,%20Alvin%20J%20K&rft.date=2020-01-31&rft.volume=124&rft.issue=4&rft.spage=041102&rft.epage=041102&rft.pages=041102-041102&rft.artnum=041102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.041102&rft_dat=%3Cproquest_cross%3E2350935839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350935839&rft_id=info:pmid/32058738&rfr_iscdi=true |