Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference

We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise datase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-01, Vol.124 (4), p.041102-041102, Article 041102
Hauptverfasser: Chua, Alvin J K, Vallisneri, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 041102
container_issue 4
container_start_page 041102
container_title Physical review letters
container_volume 124
creator Chua, Alvin J K
Vallisneri, Michele
description We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.211101]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments.
doi_str_mv 10.1103/PhysRevLett.124.041102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2355973432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350935839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-69eb4977dccf0e985d48066424084267a4717b98920b3b58188b79c86b1bfc433</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOj_-ghS88abz5KNNcqmiUxg6huJlSbNTrXaNJunG_r3VTRGvXjg878vhIeSYwpBS4GeTl1WY4mKMMQ4pE0MQ_ZltkQEFqVNJqdgmAwBOUw0g98h-CK8AQFmudskeZ5ApydWATMdofFu3z8mFWWGoTZtMXIjoa-dDsqzjS3KHnTdNH3Hp_FtIKueTkTeLOppYu9Y06ZNZYHLbVuixtXhIdirTBDza5AF5vL56uLxJx_ej28vzcWq5ZjHNNZZCSzmztgLUKpsJBXkumAAlWC6NkFSWWmkGJS8zRZUqpbYqL2lZWcH5ATld775799FhiMW8DhabxrToulAwnmVacsFZj578Q19d5_vXvynQPFNc91S-pqx3IXisindfz41fFRSKL-vFH-tFb71YW--Lx5v5rpzj7Lf2o5l_AuLxf54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350935839</pqid></control><display><type>article</type><title>Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chua, Alvin J K ; Vallisneri, Michele</creator><creatorcontrib>Chua, Alvin J K ; Vallisneri, Michele</creatorcontrib><description>We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.211101]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.041102</identifier><identifier>PMID: 32058738</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Artificial neural networks ; Astronomy ; Bayesian analysis ; Gravitation ; Gravitational waves ; Machine learning ; Neural networks ; Parameter estimation ; Reduced order models ; Statistical inference ; Waveforms</subject><ispartof>Physical review letters, 2020-01, Vol.124 (4), p.041102-041102, Article 041102</ispartof><rights>Copyright American Physical Society Jan 31, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-69eb4977dccf0e985d48066424084267a4717b98920b3b58188b79c86b1bfc433</citedby><cites>FETCH-LOGICAL-c392t-69eb4977dccf0e985d48066424084267a4717b98920b3b58188b79c86b1bfc433</cites><orcidid>0000-0002-4162-0033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32058738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chua, Alvin J K</creatorcontrib><creatorcontrib>Vallisneri, Michele</creatorcontrib><title>Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.211101]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments.</description><subject>Artificial neural networks</subject><subject>Astronomy</subject><subject>Bayesian analysis</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Reduced order models</subject><subject>Statistical inference</subject><subject>Waveforms</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMoOj_-ghS88abz5KNNcqmiUxg6huJlSbNTrXaNJunG_r3VTRGvXjg878vhIeSYwpBS4GeTl1WY4mKMMQ4pE0MQ_ZltkQEFqVNJqdgmAwBOUw0g98h-CK8AQFmudskeZ5ApydWATMdofFu3z8mFWWGoTZtMXIjoa-dDsqzjS3KHnTdNH3Hp_FtIKueTkTeLOppYu9Y06ZNZYHLbVuixtXhIdirTBDza5AF5vL56uLxJx_ej28vzcWq5ZjHNNZZCSzmztgLUKpsJBXkumAAlWC6NkFSWWmkGJS8zRZUqpbYqL2lZWcH5ATld775799FhiMW8DhabxrToulAwnmVacsFZj578Q19d5_vXvynQPFNc91S-pqx3IXisindfz41fFRSKL-vFH-tFb71YW--Lx5v5rpzj7Lf2o5l_AuLxf54</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Chua, Alvin J K</creator><creator>Vallisneri, Michele</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4162-0033</orcidid></search><sort><creationdate>20200131</creationdate><title>Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference</title><author>Chua, Alvin J K ; Vallisneri, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-69eb4977dccf0e985d48066424084267a4717b98920b3b58188b79c86b1bfc433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Astronomy</topic><topic>Bayesian analysis</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Reduced order models</topic><topic>Statistical inference</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chua, Alvin J K</creatorcontrib><creatorcontrib>Vallisneri, Michele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chua, Alvin J K</au><au>Vallisneri, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-01-31</date><risdate>2020</risdate><volume>124</volume><issue>4</issue><spage>041102</spage><epage>041102</epage><pages>041102-041102</pages><artnum>041102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.211101]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32058738</pmid><doi>10.1103/PhysRevLett.124.041102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4162-0033</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-01, Vol.124 (4), p.041102-041102, Article 041102
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2355973432
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Astronomy
Bayesian analysis
Gravitation
Gravitational waves
Machine learning
Neural networks
Parameter estimation
Reduced order models
Statistical inference
Waveforms
title Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Bayesian%20Posteriors%20with%20Neural%20Networks%20for%20Gravitational-Wave%20Inference&rft.jtitle=Physical%20review%20letters&rft.au=Chua,%20Alvin%20J%20K&rft.date=2020-01-31&rft.volume=124&rft.issue=4&rft.spage=041102&rft.epage=041102&rft.pages=041102-041102&rft.artnum=041102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.041102&rft_dat=%3Cproquest_cross%3E2350935839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350935839&rft_id=info:pmid/32058738&rfr_iscdi=true