Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference
We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise datase...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-01, Vol.124 (4), p.041102-041102, Article 041102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(θ|D) for the source parameters θ, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.211101]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.124.041102 |