Lipid metabolism of leukocytes in the unstimulated and activated states

Lipidomics has emerged as a powerful technique to study cellular lipid metabolism. As the lipidome contains numerous isomeric and isobaric species resulting in a significant overlap between different lipid classes, cutting-edge analytical technology is necessary for a comprehensive analysis of lipid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2020-04, Vol.412 (10), p.2353-2363
Hauptverfasser: Alarcon-Barrera, Juan Carlos, von Hegedus, Johannes H., Brouwers, Hilde, Steenvoorden, Evelyne, Ioan-Facsinay, Andreea, Mayboroda, Oleg A., Ondo-Mendez, Alejandro, Giera, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipidomics has emerged as a powerful technique to study cellular lipid metabolism. As the lipidome contains numerous isomeric and isobaric species resulting in a significant overlap between different lipid classes, cutting-edge analytical technology is necessary for a comprehensive analysis of lipid metabolism. Just recently, differential mobility spectrometry (DMS) has evolved as such a technology, helping to overcome several analytical challenges. We here set out to apply DMS and the Lipidyzer™ platform to obtain a comprehensive overview of leukocyte-related lipid metabolism in the resting and activated states. First, we tested the linearity and repeatability of the platform by using HL60 cells. We obtained good linearities for most of the thirteen analyzed lipid classes (correlation coefficient > 0.95), and good repeatability (%CV 
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-020-02460-8