Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system
The Macleay River in eastern Australia is severely impacted by historic stibnite- and arsenopyrite-rich mine-tailings. We explore the partitioning, speciation, redox-cycling, mineral associations and mobility of antimony and arsenic along >70 km reach of the upper Macleay River. Elevated Sb/As oc...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2020-03, Vol.710, p.136354-136354, Article 136354 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Macleay River in eastern Australia is severely impacted by historic stibnite- and arsenopyrite-rich mine-tailings. We explore the partitioning, speciation, redox-cycling, mineral associations and mobility of antimony and arsenic along >70 km reach of the upper Macleay River. Elevated Sb/As occur throughout the active channel-zone and in floodplain pockets up to the regolith margin, indicating broad dispersal during floods. Sb concentrations in bulk-sediments decay exponentially downstream more efficiently than As, likely reflecting sediment dilution, hydraulic sorting and comparatively greater leaching of (more mobile) Sb(V) species. However, Sb in bulk-sediments becomes proportionally more bio-available downstream. Sb(V) and As(V) species dominate stream fine-grained ( |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2019.136354 |