TiO2 with exposed (001) facets/Bi4O5Br2 nanosheets heterojunction with enhanced photocatalytic for NO removal
A TiO2 with exposed (001) facets/Bi4O5Br2 nanosheets heterojunction (TNS/BOB) was fabricated via a hydrothermal and electrostatic self-assembly method. The photocatalytic activity for NO removal was evaluated under simulated solar light irradiation. Through optimizing the content of TNS nanosheets,...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2020-04, Vol.31 (25), p.254002-254002 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A TiO2 with exposed (001) facets/Bi4O5Br2 nanosheets heterojunction (TNS/BOB) was fabricated via a hydrothermal and electrostatic self-assembly method. The photocatalytic activity for NO removal was evaluated under simulated solar light irradiation. Through optimizing the content of TNS nanosheets, the photo-oxidative NO removal rate of 15% TNS/BOB was increased by up to 54.3%. This value is much higher than that of the individual components TNS (31.1%) and BOB (37.7%). Through capturing experiments and electron spin resonance (ESR) measurements, the main active species in the photocatalytic process were identified as O 2 − and OH. Discrete Fourier transform computation results and ESR tests revealed that the photo-induced electrons in TNS should recombine with the holes in BOB, leading to effectively promoted charge separation at the TNS/BOB interface through the Z-type charge transfer. This work showed that with appropriate facet control and heterojunction design TiO2 can be used as an effective visible-light photocatalyst material. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ab7583 |