Interface-Specific Two-Dimensional Electronic Sum Frequency Generation Spectroscopy

High even-order surface/interface specific spectroscopy has the potential to provide more structural and dynamical information about surfaces and interfaces. In this work, we developed a novel fourth-order interface-specific two-dimensional electronic sum frequency generation (2D-ESFG) for structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-03, Vol.11 (5), p.1738-1745
Hauptverfasser: Deng, Gang-Hua, Qian, Yuqin, Wei, Qianshun, Zhang, Tong, Rao, Yi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High even-order surface/interface specific spectroscopy has the potential to provide more structural and dynamical information about surfaces and interfaces. In this work, we developed a novel fourth-order interface-specific two-dimensional electronic sum frequency generation (2D-ESFG) for structures and dynamics at surfaces and interfaces. A translating wedge-based identical pulses encoding system (TWINs) was introduced to generate phase-locked pulse pairs for coherent pump beams in 2D-ESFG. As a proof-of-principle experiment, fourth-order 2D-ESFG spectroscopy was used to demonstrate couplings of surface states for both n-type and p-type GaAs (100). We found surface dark state within the bandgap of the GaAs in 2D-ESFG spectra, which could not be observed in one-dimensional ESFG spectra. To our best knowledge, this is a first demonstration of interface-specific two-dimensional electronic spectroscopy. The development of the 2D-ESFG spectroscopy will provide new structural probes of spectral diffusion, conformational dynamics, energy transfer, and charge transfer for surfaces and interfaces.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c00157