A 16‐mRNA signature optimizes recurrence‐free survival prediction of Stages II and III gastric cancer

High‐throughput messenger RNA (mRNA) analysis has become a powerful tool for exploring tumor recurrence or metastasis mechanisms. Here, we constructed a signature to predict the recurrence risk of Stages II and III gastric cancer (GC) patients. A least absolute shrinkage and selection operator metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2020-07, Vol.235 (7-8), p.5777-5786
Hauptverfasser: Peng, Ke, Chen, Erbao, Li, Wei, Cheng, Xi, Yu, Yiyi, Cui, Yuehong, Li, Qian, Wang, Yan, Xu, Xiaojing, Tang, Cheng, Gan, Lu, Yu, Shan, Liu, Tianshu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High‐throughput messenger RNA (mRNA) analysis has become a powerful tool for exploring tumor recurrence or metastasis mechanisms. Here, we constructed a signature to predict the recurrence risk of Stages II and III gastric cancer (GC) patients. A least absolute shrinkage and selection operator method Cox regression model was utilized to construct the signature. Using this method, a 16‐mRNA signature was identified to be associated with the relapse‐free survival of Stages II and III GCs in training dataset GSE62254 (n = 194). Then this signature was validated in an independent Gene Expression Omnibus cohort GSE26253 (n = 297) and a dataset of The Cancer Genome Atlas (TCGA; n = 235). This classifier could successfully screen out the high‐risk Stages II and III GCs in the training cohort (hazard ratio [HR] = 40.91; 95% confidence interval [CI] = 5.58–299.7; p 
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.29511