Collagen-Immobilized Extracellular FRET Reporter for Visualizing Protease Activity Secreted by Living Cells

Despite the diverse roles of cell-secreted proteases in the extracellular matrix (ECM), classical methods to analyze protease activity have not been explored at the cell culture site. Here, we report a stable, matrix-sticky, and protease-sensitive extracellular reporter that comprises a collagen-bin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2020-03, Vol.5 (3), p.655-664
Hauptverfasser: Lee, Hawon, Kim, Se-jeong, Shin, Heungsoo, Kim, Young-Pil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the diverse roles of cell-secreted proteases in the extracellular matrix (ECM), classical methods to analyze protease activity have not been explored at the cell culture site. Here, we report a stable, matrix-sticky, and protease-sensitive extracellular reporter that comprises a collagen-binding protein and a Förster resonance energy transfer (FRET) coupler of an enhanced green fluorescent protein and a small dye molecule. The extracellular FRET reporter via split intein-mediated protein trans-splicing is able to adhere to collagen matrices, leading to fluorescence changes by matrix metalloproteinase-2 (MMP2) activity during living cell culture without impeding cell viability. When a proMMP2 mutant (Y581A) with altered protease secretion and activity was transfected into cancer cells, the reporter revealed a dramatic reduction in MMP2 activity in both two- and three-dimensional culture systems, compared with cells transfected with wild-type proMMP2. Our reporter is immediately amenable to monitor protease activity in diverse ECM-resident cells as well as to study protease-related extracellular signaling and tissue remodeling.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.9b01456