Economic and environmental effects of double cropping winter annuals and corn using the Integrated Farm System Model
Dairy farms have been under pressure to reduce negative environmental impacts while remaining profitable during times with volatile milk and commodity prices. Double cropping has been promoted to reduce negative environmental impacts and increase total dry matter yield per hectare. Three dairy farms...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2020-04, Vol.103 (4), p.3804-3815 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dairy farms have been under pressure to reduce negative environmental impacts while remaining profitable during times with volatile milk and commodity prices. Double cropping has been promoted to reduce negative environmental impacts and increase total dry matter yield per hectare. Three dairy farms that double cropped winter annuals and corn were selected from northern and western Pennsylvania. Data were collected from recorded crop and dairy records and financial data for 2016 and 2017. Farms ranged in size from 336 to 511 ha with 233 to 663 cows. Data were used to set parameters for the Integrated Farm System Model, which was then used to simulate 8 scenarios for each farm: current operation; 0, 50, and 100% of corn hectares double cropped; 30% feed price increase with and without double cropping; and 30% feed price decrease with and without double cropping at the farm's current level of double cropping. A 20-yr time period, using weather data that was representative of the actual farms, was used in the Integrated Farm System Model simulation to produce both financial and environmental outputs. Double cropping winter annuals and corn silage increased dry matter yield per hectare by 19%, when comparing 0 to 100% of the corn area double cropped. With all corn land double cropped, net return to management per hundredweight (45.36 kg) of milk increased by 1.8%, N leached per hectare per year decreased by an average of 4.5%, and phosphorus loss was reduced by an average of 9.2% across farms. When feed prices increased by 30%, double cropping increased net return over feed cost and net return to management by 1.6 and 2.2%, respectively, across farms. When feed prices decreased by 30%, double cropping decreased net return over feed cost and net return to management by smaller amounts of 0.13% and 0.11%, respectively, across farms. Modeling indicated that double cropping winter annuals with corn silage can have both environmental and economic benefits when winter-annual silage yields are enough to cover expenses. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2019-17525 |