Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration

The recent advent of 3D bioprinting of biopolymers provides a novel method for fabrication of tissue-engineered scaffolds and also offers a potentially promising avenue in cartilage regeneration. Silk fibroin (SF) is one of the most popular biopolymers used for 3D bioprinting, but further applicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering. Part A 2020-08, Vol.26 (15-16), p.886-895
Hauptverfasser: Li, Zuxi, Zhang, Xiao, Yuan, Tao, Zhang, Yi, Luo, Chunyang, Zhang, Jiyong, Liu, Yang, Fan, Weimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent advent of 3D bioprinting of biopolymers provides a novel method for fabrication of tissue-engineered scaffolds and also offers a potentially promising avenue in cartilage regeneration. Silk fibroin (SF) is one of the most popular biopolymers used for 3D bioprinting, but further application of SF is hindered by its limited biological activities. Incorporation of growth factors (GFs) has been identified as a solution to improve biological function. Platelet-rich plasma (PRP) is an autologous resource of GFs, which has been widely used in clinic. In this study, we have developed SF-based bioinks incorporated with different concentrations of PRP (12.5%, 25%, and 50%; vol/vol). Release kinetic studies show that SF-PRP bioinks could achieve controlled release of GFs. Subsequently, SF-PRP bioinks were successfully fabricated into scaffolds by bioprinting. Our results revealed that SF-PRP scaffolds possessed proper internal pore structure, good biomechanical properties, and a suitable degradation rate for cartilage regeneration. Live/dead staining showed that 3D, printed SF-PRP scaffolds were biocompatible. Moreover, in vitro studies revealed that tissue-engineered cartilage from the SF-PRP group exhibited improved qualities compared with the pure SF controls, according to histological and immunohistochemical findings. Biochemical evaluations confirmed that SF-PRP (50% PRP, v/v) scaffolds allowed the largest increases in collagen and glycosaminoglycan concentrations, when compared with the pure SF group. These findings suggest that 3D, printed SF-PRP scaffolds could be potential candidates for cartilage tissue engineering.
ISSN:1937-3341
1937-335X
DOI:10.1089/ten.tea.2019.0304