Probing phase transition in VO2 with the novel observation of low-frequency collective spin excitation
VO 2 is well known for its first order, reversible, metal-to-insulator transition (MIT) along with a simultaneous structural phase transition (SPT) from a high-temperature metallic rutile tetragonal (R) to an insulating low-temperature monoclinic (M1) phase via two other insulating metastable phases...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-02, Vol.10 (1), p.1977-1977, Article 1977 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | VO
2
is well known for its first order, reversible, metal-to-insulator transition (MIT) along with a simultaneous structural phase transition (SPT) from a high-temperature metallic rutile tetragonal (R) to an insulating low-temperature monoclinic (M1) phase via two other insulating metastable phases of monoclinic M2 and triclinic T. At the same time, VO
2
gains tremendous attention because of the half-a-century-old controversy over its origin, whether electron-electron correlation or electron-phonon coupling trigger the phase transition. In this regard, V
1-x
Mg
x
O
2
samples were grown in stable phases of VO
2
(M1, M2, and T) by controlled doping of Mg. We have observed a new collective mode in the low-frequency Raman spectra of all three insulating M1, M2 and T phases. We identify this mode with the breather (singlet spin excitation) mode about a spin-Pierls dimerized one dimensional spin ½ Heisenberg chain. The measured frequencies of these collective modes are phenomenologically consistent with the superexchange coupling strength between V spin ½ moments in all three phases. The significant deviation of Stokes to anti-Stokes intensity ratio of this low-frequency Raman mode from the usual thermal factor exp(
hʋ
/
K
B
T
) for phonons, and the orthogonal dependency of the phonon and spinon vibration in the polarized Raman study confirm its origin as spin excitations. The shift in the frequency of spin-wave and simultaneous increase in the transition temperature in the absence of any structural change confirms that SPT does not prompt MIT in VO
2
. On the other hand, the presence of spin-wave confirms the perturbation due to spin-Peierls dimerization leading to SPT. Thus, the observation of spin-excitations resulting from 1-D Heisenberg spin-½ chain can finally resolve the years-long debate in VO
2
and can be extended to oxide-based multiferroics, which are useful for various potential device applications. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-58813-x |