Metabolic profiling of dormant Mycolicibacterium smegmatis cells’ reactivation reveals a gradual assembly of metabolic processes
Introduction Under gradual acidification of the culture medium mycobacterial cells transit into a specific state characterized by low level of metabolic activity and morphological alterations. This state of non-replicative persistence (dormancy) is directly linked to physiological drug resistance, w...
Gespeichert in:
Veröffentlicht in: | Metabolomics 2020-02, Vol.16 (2), p.24-24, Article 24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction
Under gradual acidification of the culture medium mycobacterial cells transit into a specific state characterized by low level of metabolic activity and morphological alterations. This state of non-replicative persistence (dormancy) is directly linked to physiological drug resistance, which complicates the efforts to eradicate the latent forms of TB. In order to find new anti-latent TB compounds, the metabolic processes which may occur in the state of dormancy and during the transition into the active state (reactivation) should be characterized.
Objectives
In the current study we analyzed the untargeted metabolomic profiles of dormant and reactivating
Mycolicibacterium smegmatis
cells (a model microorganism, bearing many common physiological traits of MTB), on the global scale level, since the characterization and analysis of the metabolites’ dynamics would provide a comprehensive overview on global biochemical responses of the bacteria to stress conditions.
Methods
The reactivation process was tracked by measuring the value of membrane potential, applying a ratio-metric approach, by the method of flow-cytometry. The crucial timepoints were selected and the bacteria were sampled to LC–MS metabolic profiling.
Results
Reactivation of these cells after 60 days of storage revealed that this process proceeds in two stages: (I) a period, which lasts for 10 h and is characterized by a constant CFU number, unchangeable cell size, a minuscule increase of respiratory activity and a noticeable increase in membrane potential value, indicating the onset of the first metabolic processes during this time interval; the second phase (10–26 h) is characterized by acceleration of endogenous respiration, changes in the size of the cells and it finishes with the beginning of cells division. Analysis of the changes in the relative abundances of KEGG-annotated metabolites revealed that a significant number of metabolites, such as stearic acid, glycerol,
d
-glucose, trehalose-6-phosphate decrease their concentrations over the reactivation time, whereas in contrast, such metabolites as dodecanoic acid, mycobactin S, and other compounds of PG/AG biosynthesis are synthesized during reactivation. Differential analysis of metabolic profiles disclosed the activation of a number of metabolic pathways at the early reactivation stage: biosynthesis of secondary metabolites, purine and pyrimidine metabolism, glycerophospholipid and fatty acids metabolism etc.
Conclusion
The da |
---|---|
ISSN: | 1573-3882 1573-3890 |
DOI: | 10.1007/s11306-020-1645-8 |