Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks

The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes Cπ in estimating genomic breeding values for meat tenderness in Nellore cattle. The animals were genotyped with the Illumin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal breeding and genetics (1986) 2020-09, Vol.137 (5), p.438-448
Hauptverfasser: Brito Lopes, Fernando, Magnabosco, Cláudio U., Passafaro, Tiago L., Brunes, Ludmilla C., Costa, Marcos F. O., Eifert, Eduardo C., Narciso, Marcelo G., Rosa, Guilherme J. M., Lobo, Raysildo B., Baldi, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes Cπ in estimating genomic breeding values for meat tenderness in Nellore cattle. The animals were genotyped with the Illumina Bovine HD Bead Chip (HD, 777K from 90 samples) and the GeneSeek Genomic Profiler (GGP Indicus HD, 77K from 485 samples). The quality control for the genotypes was applied on each Chip and comprised removal of SNPs located on non‐autosomal chromosomes, with minor allele frequency
ISSN:0931-2668
1439-0388
DOI:10.1111/jbg.12468