The Jasmonic Acid Pathway Positively Regulates the Polyphenol Oxidase-Based Defense against Tea Geometrid Caterpillars in the Tea Plant (Camellia sinensis)

Polyphenol oxidases (PPOs) as inducible defense proteins, contribute to tea ( Camellia sinensis ) resistance against tea geometrid larvae ( Ectropis grisescens ), and this resistance has been associated with the jasmonic acid (JA) signaling by testing geometrid performance in our previous work. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical ecology 2020-03, Vol.46 (3), p.308-316
Hauptverfasser: Zhang, Jin, Zhang, Xin, Ye, Meng, Li, Xi-Wang, Lin, Song-Bo, Sun, Xiao-Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyphenol oxidases (PPOs) as inducible defense proteins, contribute to tea ( Camellia sinensis ) resistance against tea geometrid larvae ( Ectropis grisescens ), and this resistance has been associated with the jasmonic acid (JA) signaling by testing geometrid performance in our previous work. However, the regulation of PPO-based defense by JA and other hormone signaling underlying these defense responses is poorly understood. Here, we investigated the role of phytohormones in regulating the PPO response to tea geometrids. We profiled levels of defense hormones, PPO activity and CsPPO genes in leaves infested with tea geometrids. Then, hormone levels were manipulated by exogenous application of methyl jasmonate (MeJA), gibberellin acid (GA 3 ), abscisic acid (ABA), JA biosynthesis inhibitors (sodium diethyldithiocarbamate trihydrate, DIECA and salicylhydroxamic acid, SHAM) and GA inhibitor (uniconazole, UNI). Upon geometrid attack, JA levels significantly increased, whereas GA levels notably decreased and ABA level was slightly decreased. And the PPO activity significantly increased in line with the transcript levels of CsPPO2 and CsPPO4 but not CsPPO1 . There were an obvious antagonistic cross-talk between JA and GA signals and an association among JA signals, PPO response and herbivore resistance in tea plants. Pretreatment with MeJA increased PPO activity by activating the transcripts of CsPPO2 and CsPPO4 , whereas application of JA inhibitor DIECA suppressed PPO activity. GA 3 strongly enhanced PPO activity, but ABA did not alter PPO activity. These findings strongly suggest that JA is a central player in PPO-mediated tea resistance against tea geometrids in a manner that prioritizes defense over growth.
ISSN:0098-0331
1573-1561
DOI:10.1007/s10886-020-01158-6