Chiral Phosphoric Acid Catalyzed Atroposelective C−H Amination of Arenes

N‐arylcarbazole structures are important because of their prevalence in natural products and functional OLED materials. C−H amination of arenes has been widely recognized as the most efficient approach to access these structures. Conventional strategies involving transition‐metal catalysts suffer fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-04, Vol.59 (17), p.6775-6779
Hauptverfasser: Xia, Wang, An, Qian‐Jin, Xiang, Shao‐Hua, Li, Shaoyu, Wang, Yong‐Bin, Tan, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:N‐arylcarbazole structures are important because of their prevalence in natural products and functional OLED materials. C−H amination of arenes has been widely recognized as the most efficient approach to access these structures. Conventional strategies involving transition‐metal catalysts suffer from confined substrate generality and the requirement of exogenous oxidants. Organocatalytic enantioselective C–N chiral axis construction remains elusive. Presented here is the first organocatalytic strategy for the synthesis of novel axially chiral N‐arylcarbazole frameworks by the assembly of azonaphthalenes and carbazoles. This reaction accommodates broad substrate scope and gives atropisomeric N‐arylcarbazoles in good yields with excellent enantiocontrol. This approach not only offers an alternative to metal‐catalyzed C–N cross‐coupling, but also brings about opportunities for the exploitation of structurally diverse N‐aryl atropisomers and OLED materials. In the frame: Presented here is the first organocatalytic strategy for the synthesis of novel axially chiral N‐arylcarbazole frameworks by the assembly of azonaphthalenes and carbazoles. This reaction accommodates broad substrate scope and gives atropisomeric N‐arylcarbazoles in good yields with excellent enantiocontrol. This approach offers opportunities for the exploitation of structurally diverse N‐aryl atropisomers and OLED materials. CPA=chiral phosphoric acid.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202000585