Metformin rescues Parkin protein expression and mitophagy in high glucose-challenged human renal epithelial cells by inhibiting NF-κB via PP2A activation
Our preliminary research revealed that metformin, a classic anti-diabetic drug, could rescue Parkin protein expression and mitophagy in high glucose-challenged human renal epithelial cells in vitro, but the molecular mechanism remains to be explored. In the study, Human Renal Cortical Epithelial Cel...
Gespeichert in:
Veröffentlicht in: | Life sciences (1973) 2020-04, Vol.246, p.117382-8, Article 117382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our preliminary research revealed that metformin, a classic anti-diabetic drug, could rescue Parkin protein expression and mitophagy in high glucose-challenged human renal epithelial cells in vitro, but the molecular mechanism remains to be explored. In the study, Human Renal Cortical Epithelial Cells (HRCEpiC) and Human Renal Proximal Tubular Epithelial Cells (HRPTEpic) were challenged with high glucose with or without metformin pre-treatment to monitor Parkin mRNA and protein expression level change. PRKN gene knockdown was performed by lentiviral-based shRNA delivery. Cell viability, apoptosis and mitophagy were monitored after treatment. Mitochondrial damage was evaluated by analyzing mitochondrial permeability transition pore opening, membrane potential change, mitochondrial superoxide accumulation and cytochrome C release. Protein levels of activating transcription factor 4 (ATF4), p53 phospho-Ser15, IκBα phosphor-Ser32, IKKα phosphor-Ser176/180 in whole cell lysate and nuclear entry of p50/p65 were assessed by western blot. Okadaic acid was used to inhibit protein phosphatase 2A (PP2A). The data suggested high glucose challenge significantly reduced PRKN gene expression, mitophagy, mitochondria integrity and cell viability in vitro, which was rescued by metformin co-treatment. The effects of metformin were crippled by PRKN gene knockdown. Metformin increased PRKN gene transcription while reducednuclear factor kappa B (NF-κB) activation but not that of p53 or ATF4. Inhibiting PP2A weakened NF-κB inhibition and PRKN induction by metformin in high glucose-challenged cells, reducing its mitochondrial protective and cytoprotective effect. So, we concluded thatmetformin protects human renal epithelial cells from high glucose-induced apoptosis by restoring Parkin protein expression and mitophagy via PP2A activation and NF-κB inhibition. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2020.117382 |