Core-shell structured 5-FU@ZIF-90@ZnO as a biodegradable nanoplatform for synergistic cancer therapy
High treatment efficiency and low drug toxicity are two key factors in tumor therapy. The development of multifunctional drug carrier systems is of great significance for the diagnosis and therapy of tumors. Herein, a novel biodegradable treatment system based on zeolitic imidazolate framework-90 (Z...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2020-02, Vol.12 (6), p.3846-3854 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High treatment efficiency and low drug toxicity are two key factors in tumor therapy. The development of multifunctional drug carrier systems is of great significance for the diagnosis and therapy of tumors. Herein, a novel biodegradable treatment system based on zeolitic imidazolate framework-90 (ZIF-90) was designed in this study. This 5-FU@ZIF-90@ZnO (FZZ) drug delivery system achieves synergistic treatment with antineoplastic 5-fluorouracil (5-FU) and zinc oxide, and also has good dispersibility in the acidic tumor microenvironment (TME), which enables the drug to achieve pH-controlled delivery in acidic organisms. Interestingly, zinc oxide nanoparticles can play a dual role here. They can prevent the premature leakage of drugs under physiological conditions. Moreover, Zn
2+
produced after the decomposition of nanoparticles can act as a therapeutic agent, overcoming the tumor resistance to 5-FU and regulating a series of physiological reactions to inhibit tumor growth. It is worth noting that the porous ZIF-90 is an emerging drug carrier with a relatively high drug loading rate of 39% in this study. Synergistic 5-FU and ZnO nanoparticles have achieved tumor inhibition and have shown high therapeutic biosafety. Thus, the FZZ core-shell nanoparticles are a potential pH-controlled drug release system that can be applied to tumor treatment.
High treatment efficiency and low drug toxicity are two key factors in tumor therapy. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c9nr09869k |