Comparing Breast Conservation Surgery Seromas Contoured by Radiation Therapists versus those Contoured by a Radiation Oncologist in Radiation Therapy Planning for Early-Stage Breast Cancer
In the management of early-stage breast cancer using radiation therapy, computed tomography (CT) simulation is used to identify the breast conservation surgery (BCS) seroma as a proxy for the tumour bed. The delineation or contouring of the seroma is generally a task performed by a radiation oncolog...
Gespeichert in:
Veröffentlicht in: | Journal of medical imaging and radiation sciences 2020-03, Vol.51 (1), p.108-116 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the management of early-stage breast cancer using radiation therapy, computed tomography (CT) simulation is used to identify the breast conservation surgery (BCS) seroma as a proxy for the tumour bed. The delineation or contouring of the seroma is generally a task performed by a radiation oncologist (RO). With increasing patient numbers and other demands placed on ROs, the scope of practice for radiation therapists (RTs) is continually expanding, and the need for skills transfer from one profession to another has been investigated in recent years.
This study aims to compare the BCS seroma volumes contoured by RTs with those contoured by ROs to add evidence in support of expanding the RTs' role in the treatment planning process in the management of early-stage breast cancer.
A study was undertaken using the CT-simulation (CT-sim) data sets of patients with early-stage breast cancer treated in 2013. The CT-sim data sets had BCS seromas contoured by 1 of 5 ROs as part of routine clinical management. This study involved 4 RTs who each used the patient information to identify and contour breast seromas on 50 deidentified CT-sim data sets. Metrics used to compare RT versus RO contours included volume size, overlap between volumes, and geographical distance from the centre of volumes.
There were 50 CT-sim data sets with 1 RO contour and 4 RT contours analysed. The contour volumes of the 4 RTs and the ROs were assessed. Although there were 50 CT-sim data sets presented to each RT, analysis was carried out on 45, 43, 46, and 45 CT-sim data sets. There were no comparisons made where contours were not delineated. The contour volumes of the 4 RTs and the ROs were assessed with an interclass correlation coefficient, with a result of excellent reliability (0.975, 95% [0.963, 0.985]). The DICE similarity coefficient was used to compare the overlap of each RT contour with the RO contour; the results were favourable with mean (95% CI) DSCs 0.685, 0.640, 0.678, and 0.681, respectively. Comparing the RT and RO geographical centre of the seroma volumes, good to excellent reliability between the RTs and ROs was demonstrated (95% CI mean RO vs RT distances (mm): 3.75, 4.99, 7.71, and 3.39). There was no statistically significant difference between the distances (P = 0.65).
BCS seromas contoured by RTs compared well with those contoured by an RO. This research has provided further evidence to support RTs in assuming additional contouring responsibilities in radiation therapy |
---|---|
ISSN: | 1939-8654 1876-7982 |
DOI: | 10.1016/j.jmir.2019.10.007 |